![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This book is a continuation of 'Acoustic and Elastic Wave Fields in
Geophysics, Part I' published in 2000. The second volume is
dedicated to propagation of linear plane, spherical and cylindrical
acoustic waves in different media. Chapter 1 is devoted to
principles of geometric acoustic in plane wave approximation. The
eikonal and transport equations are derived. Ray tracing and
wavefront construction techniques are explained. Chapter 2 deals
with dynamic properties of wave fields. The behavior of pressure
and displacements amplitudes in zero approximation is analysed in
two ways: using Poynting vector and solving the transport equation.
This chapter contains several examples related to shadow zones and
caustics. In Chapter 3 using the results of analysis of
high-frequency wave kinematics and dynamics some fundamental
aspects of Kirchhoff migration are described. Chapters 4 and 5 are
devoted to propagation of plane waves in media with flat boundaries
in the case of normal and oblique incidence. Special attention is
paid to the case when an incident angle exceeds the critical
angles. Formation of normal modes in the waveguide is discussed.
Chapter 6 deals with a spherical wave reflection and refraction.
The steepest descent method is introduced to describe the behavior
of reflected, transmitted, head and evanescent waves. In Chapter 7
propagation of stationary and transient waves in a waveguide formed
by a flat layer with low velocity are investigated. Normal modes
and waves related to the branch points of integrands under
consideration are studied. Dispersive properties of normal modes
are discussed. Chapter 8 describes wave propagation inside cylinder
in acoustic media. Several appendices are added to help the reader
understand different aspects of mathematics used in the book.
The book presents a history of classical mechanics by focusing on issues of equilibrium. The historical point of view adopted here restricts attention to cases where the effectiveness of forces is assessed on the basis of the virtual motion of their points of application. For completeness, hints of the alternative approach are also referred, the Archimedean for ancient mechanics and the Newtonian for modern mechanics. The laws resulting from consideration of virtual motions are named laws of virtual work. The modern formulations of the principle of virtual work are only a particular form of them. The book begins with the first documented formulations of laws of virtual work in the IV century BC in Greece and proceeds to the end of the XIX century AD in Europe. A significant space is devoted to Arabic and Latin mechanics of Middle Ages. With the Renaissance it began to appear slightly different wordings of the laws, which were often proposed as unique principles of statics. The process reached its apex with Bernoulli and Lagrange in the XVIII century. The book ends with some chapters dealing with the discussions that took place in the French school on the role of the Lagrangian version of the law of virtual work and its applications to continuum mechanics.
The investigation of minor solar system bodies, such as comets and asteroids, using spacecraft requires an understanding of orbital motion in strongly perturbed environments. The solutions to a wide range of complex and challenging problems in this field are reviewed in this comprehensive and authoritative work.
The text of the Persian poet Rum - - ?, written some eight centuries ago, and reproduced at the beginning of this book is still relevant to many of our pursuits of knowledge, not least of turbulence. The text illustrates the inability people have in seeing the whole thing, the 'big picture'. Everybody looks into the problem from his/her vi- point, and that leads to disagreement and controversy. If we could see the whole thing, our understanding would become complete and there would be no cont- versy. The turbulent motion of the atmosphere and oceans, at the heart of the observed general circulation, is undoubtedly very complex and dif?cult to understand in its entirety. Even 'bare' turbulence, without rotation and strati?cation whose effects are paramount in the atmosphere and oceans, still poses great fundamental ch- lenges for understanding after a century of research. Rotating strati?ed turbulence is a relatively new research topic. It is also far richer, exhibiting a host of distinct wave types interacting in a complicated and often subtle way with long-lived - herent structures such as jets or currents and vortices. All of this is tied together by basic ?uid-dynamical nonlinearity, and this gives rise to a multitude of phen- ena: spontaneous wave emission, wave-induced transport, both direct and inverse energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers, anomalous transport in coherent vortices, and a very wide range of dynamical and thermodynamical instabilities.
This volume contains selected presentations of the "EUROMECH Colloquium 412 on LES of complex transitional and turbulent flows" held at the Munich University of Technology from 4 to 6 October 2000. The articles focus on new developments in the field of large-eddy simulation of complex flows and are related to the topics: modelling and analysis of subgrid scales, numerical issues in LES cartesian grids for complex geometries, curvilinear and non-structured grids for complex geometries. DES and RANS-LES coupling, aircraft wake vortices, combustion and magnetohydrodynamics. Progress has been made not only in understanding and modelling the dynamics of unresolved scales, but also in designing means that prevent the contamination of LES predictions by discretization errors. Progress is reported as well on the use of cartesian and curvilinear coordinates to compute flow in and around complex geometries and in the field of LES with unstructured grids. A chapter is dedicated to the detached-eddy simulation technique and its recent achievements and to the promising technique of coupling RANS and LES solutions in order to push the resolution-based Reynolds number limit of wall-resolving LES to higher values. Complexity due to physical mechanisms links the last two chapters. It is shown that LES constitutes the tool to analyse the physics of aircraft wake vortices during landing and takeoff. Its thorough understanding is a prerequisite for reliable predictions of the distance between consecutive landing airplanes. Subgrid combustion modelling for LES of single and two-phase reacting flows is demonstrated to have the potential to deal with finite-rate kinetics in high Reynolds numberflows of full-scale gas turbine engines. Fluctuating magnetic fields are more reliably predicted by LES when tensor-diffusivity rather than gradient-diffusion models are used. An encouraging result in the context of turbulence control by magnetic fields.
This volume collects the edited and reviewed contribution presented in the 9th iTi Conference that took place virtually, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume is produced after the conference so that the authors had the opportunity to incorporate comments and discussions raised during the meeting. In the present book, the contributions have been structured according to the topics: I Experiments II Simulations and Modelling III Data Processing and Scaling IV Theory V Miscellaneous topics
The principal object of this volume is the creation of a mathematical theory of deformations for elastic anisotropic thermodynamic piezoelastic plates, beams and shells with variable thickness. The book is divided into two parts. The first part deals with problems related to the construction of refined theories (such as those of Richhof-Love, von Karman-A. Fioppl, and Reissner) and their equivalent new models (depending on arbitrary control functions). These are investigated by means of a new variational principle. Methods of reduction, containing regular processes of study of spatial problems, are also studied. Topics treated include problems of solvability, error estimations, convergence of processes in Sobolev spaces and construction of effective schemes of solutions of two-dimensional boundary value problems for systems of partial differential equations. The second part considers stable projective methods, using classical orthogonal polynomials and a new class of spline-functions as coordinate systems, and their numerical realizations for a design of one- and two- dimensional boundary value problems from the first part. These efficient methods increase the possibilities of classical finite-difference, exponential- fitted, variational-discrete and alternating-direction methods. Audience: This book will be of interest to researchers and graduate students whose work involves mechanics, analysis, numerics and computation, mathematical modelling and industrial mathematics, calculus of variations, and design engineering.
The symposiumwas motivatedby theincreasing need for modelling of material behaviourundervarious mechan icalconditions. This need is driven by the evolut ion ofcomputer capac ityand the resulting ability for engineers and scien tiststo address complexproblems . Reliable models formaterialbehaviour, including accurate numericalvalues of parameters ,are necessary for a continued beneficial development ofthe computational side of solid mechanics .High rate plasticity ,thermally assisted creep and phasetransformationsare only a fewexamplesof areas where more accurate modelsare needed. Experiments are necessary for the establishment ofmodels and parameters , and modified versionsof conventional test methods can make important contributions . Also modern optical methodsoffer a highpotentialfor futureexperimental development. Numerical simulations ofexperiments and so-called inverse modelling arealso frequentlyused techniques. The aim of the symposium was to bring together researchers with an interest in the areaofexperimental and computational aspects ofmaterial modelling for exchange and discussionofpromising methodsandresults. Abisko,a national park in the Swedish mountain district about 200 km north of the arctic circle and about one hourve dri from the airport ofKiruna,was chosen for the symposium. The tourist hotel in the park , overlookinga beautiful lake , offered a suitablevenue for the symposium. This environment with tracks for short walks (and long hikes),goals for small excursions and a hotel with restaurant and bar ve the ga delegatesmany opportunitiesto meet , socialiseand discuss during breaks and evenings.
All phenomena in nature are characterized by motion. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature, mathematics plays an important role. Mechanics is the first science of nature which has been expressed in terms of mathematics, by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool. As it was already seen in the first two volumes of the present book, its guideline is precisely the mathematical model of mechanics. The classical models which we refer to are in fact models based on the Newtonian model of mechanics, that is on its five principles, i.e.: the inertia, the forces action, the action and reaction, the independence of the forces action and the initial conditions principle, respectively. Other models, e.g., the model of attraction forces between the particles of a discrete mechanical system, are part of the considered Newtonian model. Kepler's laws brilliantly verify this model in case of velocities much smaller then the light velocity in vacuum."
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. The first volume of this two-volume work deals with elastic and elastoplastic behaviour; this second volume continues with viscoelasticity, damage, fracture (resistance to cracking) and contact mechanics. As in Volume I, the treatment starts from the active mechanisms on the microscopic scale and develops the laws of macroscopic behaviour. Chapter I deals with viscoplastic behaviour, as shown, for example, at low temperatures by the effects of oscillatory loads and at high temperatures by creep under steady load. Chapter 2 treats damage phenomena encountered in all materials - for example, metals, polymers, glasses, concretes - such as cavitation, fatigue and stress-corrosion cracking. Chapter 3 treats those concepts of fracture mechanics that are needed for the understanding of resistance to cracking and Chapter 4 completes the volume with a survey of the main concepts of contact mechanics. As with Volume I, each chapter has a set of exercises, either with solutions or with indications of how to attack the problem; and there are many explanatory diagrams and other illustrations.
This collection is dedicated to the 70th jubilee of Yu. N.
Savchenko, and presents experimental, theoretical, and numerical
investigations written by an international group of well-known
authors. The contributions solve very important problems of the
high-speed hydrodynamics, such as supersonic motion in water, drag
diminishing, dynamics and stability of supercavitating vehicles,
water entry and hydrodynamic performances of hydrofoils, ventilated
cavities after a disc and under the ship bottom.
This volume contains the Proceedings of the IUTAM Symposium held in Liverpool in 2002. It includes the articles presenting the results of recent work in mathematical modelling that covers the following areas of continuum mechanics and theoretical physics: *-Perturbation problems for partial differential equations and their applications in mechanics; * Analysis of singular fields; * Homogenisation theory in models of composite structures; * Mathematical models of cracks in solids; * Wave propagation, scattering; * Models of photonic and phononic band gap composite structures; * Advanced numerical techniques.
This book will reveal cost reductions and how to slash your energy costs without investing big money. The three pillars of costs reduction will discussed: Assembling your options and analyzing your risk; developing options with your utility; and cutting out obvious waste in your operation. Those who will benefit from this excellent text are business owners, CFOs, plant managers, plant engineers, and energy managers. You will learn how to distill what savings are possible and how you can quickly accomplish those savings from what you already know and can expect to walk away at the end of this book with confidence and a realistic plan of action for reducing your costs.
In this thesis, the author considers quantum gravity to investigate the mysterious origin of our universe and its mechanisms. He and his collaborators have greatly improved the analyticity of two models: causal dynamical triangulations (CDT) and n-DBI gravity, with the space-time foliation which is one common factor shared by these two separate models. In the first part, the analytic method of coupling matters to CDT in 2-dimensional toy models is proposed to uncover the underlying mechanisms of the universe and to remove ambiguities remaining in CDT. As a result, the wave function of the 2-dimensional universe where matters are coupled is derived. The behavior of the wave function reveals that the Hausdorff dimension can be changed when the matter is non-unitary. In the second part, the n-DBI gravity model is considered. The author mainly investigates two effects driven by the space-time foliation: the appearance of a new conserved charge in black holes and an extra scalar mode of the graviton. The former implies a breakdown of the black-hole uniqueness theorem while the latter does not show any pathological behavior. "
The book focuses on the physical and mathematical foundations of model-based turbulence control: reduced-order modelling and control design in simulations and experiments. Leading experts provide elementary self-consistent descriptions of the main methods and outline the state of the art. Covered areas include optimization techniques, stability analysis, nonlinear reduced-order modelling, model-based control design as well as model-free and neural network approaches. The wake stabilization serves as unifying benchmark control problem.
This monograph gives a comprehensive description of the relationship and connections between kinetic theory and fluid dynamics, mainly for a time-independent problem in a general domain. Ambiguities in this relationship are clarified, and the incompleteness of classical fluid dynamics in describing the behavior of a gas in the continuum limita "recently reported as the ghost effecta "is also discussed. The approach used in this work engages an audience of theoretical physicists, applied mathematicians, and engineers. By a systematic asymptotic analysis, fluid-dynamic-type equations and their associated boundary conditions that take into account the weak effect of gas rarefaction are derived from the Boltzmann system. Comprehensive information on the Knudsen-layer correction is also obtained. Equations and their boundary conditions are carefully classified depending on the physical context of problems. Applications are presented to various physically interesting phenomena, including flows induced by temperature fields, evaporation and condensation problems, examples of the ghost effect, and bifurcation of flows. Key features: * many applications and physical models of practical interest * experimental works such as the Knudsen compressor are examined to supplement theory * engineers will not be overwhelmed by sophisticated mathematical techniques * mathematicians will benefit from clarity of definitions and precise physical descriptions given in mathematical terms * appendices collect key derivations and formulas, important to the practitioner, but not easily found in the literature Kinetic Theory and Fluid Dynamics serves as a bridge for those working indifferent communities where kinetic theory or fluid dynamics is important: graduate students, researchers and practitioners in theoretical physics, applied mathematics, and various branches of engineering. The work can be used in graduate-level courses in fluid dynamics, gas dynamics, and kinetic theory; some parts of the text can be used in advanced undergraduate courses.
Hard spheres and related objects (hard disks and mixtures of hard systems) are paradigmatic systems: indeed, they have served as a basis for the theoretical and numerical development of a number of fields, such as general liquids and fluids, amorphous solids, liquid crystals, colloids and granular matter, to name but a few. The present volume introduces and reviews some important basics and progress in the study of such systems. Their structure, thermodynamic properties, equations of state, as well as kinetic and transport properties are considered from different and complementary points of view. This book addresses graduate students, lecturers as well as researchers in statistical mechanics, physics of liquids, physical chemistry and chemical engineering.
Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer output tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) who have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary objective is to develop a rigorous but yet simple theory for the design, implementation, and performance analysis of DMAs. The theory includes some signal processing techniques for the design of commonly used first-order, second-order, third-order, and also the general "N"th-order DMAs. For each order, particular examples are given on how to form standard directional patterns such as the dipole, cardioid, supercardioid, hypercardioid, subcardioid, and quadrupole. The study demonstrates the performance of the different order DMAs in terms of beampattern, directivity factor, white noise gain, and gain for point sources. The inherent relationship between differential processing and adaptive beamforming is discussed, which provides a better understanding of DMAs and why they can achieve high directional gain. Finally, we show how to design DMAs that can be robust against white noise amplification.
This book presents a unified hierarchical formulation of theories for three-dimensional continua, two-dimensional shells, one-dimensional rods, and zero-dimensional points. It allows readers with varying backgrounds easy access to fundamental understanding of these powerful Cosserat theories.
Althoughtheprinciplesofoperationofhelicalscrewmachines, ascompressors or expanders, have been well known for more than 100 years, it is only during the past 30 years that these machines have become widely used. The main reasons for the long period before they were adopted were their relatively poor e?ciency and the high cost of manufacturing their rotors. Two main developments led to a solution to these di?culties. The ?rst of these was the introduction of the asymmetric rotor pro?le in 1973. This reduced the bl- hole area, which was the main source of internal leakage by approximately 90%, and thereby raised the thermodynamic e?ciency of these machines, to roughly the same level as that of traditional reciprocating compressors. The second was the introduction of precise thread milling machine tools at - proximately the same time. This made it possible to manufacture items of complex shape, such as the rotors, both accurately and cheaply. From then on, as a result of their ever improving e?ciencies, high rel- bility and compact form, screw compressors have taken an increasing share of the compressor market, especially in the ?elds of compressed air production, and refrigeration and air conditioning, and today, a substantial proportion of compressors manufactured for industry are of this type. Despite, the now wide usage of screw compressors and the publication of many scienti?c papers on their development, only a handful of textbooks have been published to date, which give a rigorous exposition of the principles of their operation and none of these are in English
This book is a collection of research papers selected for presentation at the International Conference on Smart Computational Methods in Continuum Mechanics 2021, organized by Moscow Institute of Physics and Technology and the Institute for Computer Aided Design of Russian Academy of Sciences. The work is presented in two volumes. The primary objective of the book is to report the state-of-the-art on smart computational paradigms in continuum mechanics and explore the use of artificial intelligence paradigms such as neural nets and machine learning for improving the performance of the designed engineering systems. The book includes up-to-date smart computational methods which are used to solve problems in continuum mechanics, engineering, seismic prospecting, non-destructive testing, and so on. The main features of the book are the research papers on the application of novel smart methods including neural nets and machine learning, computational algorithms, smart software systems, and high-performance computer systems for solving complex engineering problems. The case studies pertaining to the real-world applications in the above fields are included. The book presents a collection of best research papers in English language from some of the world leaders in the field of smart system modelling and design of engineering systems.
This book provides an introduction to turbulence in vortex systems, and to turbulence theory for incompressible flow described in terms of the vorticity field. It is the author's hope that by the end of the book the reader will believe that these subjects are identical, and constitute a special case of fairly standard statistical mechanics, with both equilibrium and non-equilibrium aspects. The author's main goal is to relate turbulence to statistical mechanics. The book is organized as follows: the first three chapters constitute a fairly standard introduction to homogeneous turbulence in incompressible flow; a quick review of fluid mechanics; a summary of the appropriate Fourier theory; a summary of Kolmogorov's theory of the inertial range. The next four chapters present the statistical theory of vortex notion, and the vortex dynamics of turbulence. The book ends with the major conclusion that turbulence can no longer be viewed as incomprehensible. This book will be appropriate for professionals in the fields of applied mathematics, mechanical engineering, or physics, as well as graduate students in these noted areas.
One of the most important routes to chaos is the chaotic intermittency. However, there are many cases that do not agree with the classical theoretical predictions. In this book, an extended theory for intermittency in one-dimensional maps is presented. A new general methodology to evaluate the reinjection probability density function (RPD) is developed in Chapters 5 to 8. The key of this formulation is the introduction of a new function, called M(x), which is used to calculate the RPD function. The function M(x) depends on two integrals. This characteristic reduces the influence on the statistical fluctuations in the data series. Also, the function M(x) is easy to evaluate from the data series, even for a small number of numerical or experimental data. As a result, a more general form for the RPD is found; where the classical theory based on uniform reinjection is recovered as a particular case. The characteristic exponent traditionally used to characterize the intermittency type, is now a function depending on the whole map, not just on the local map. Also, a new analytical approach to obtain the RPD from the mathematical expression of the map is presented. In this way all cases of non standard intermittencies are included in the same frame work. This methodology is extended to evaluate the noisy reinjection probability density function (NRPD), the noisy probability of the laminar length and the noisy characteristic relation. This is an important difference with respect to the classical approach based on the Fokker-Plank equation or Renormalization Group theory, where the noise effect was usually considered just on the local Poincare map. Finally, in Chapter 9, a new scheme to evaluate the RPD function using the Perron-Frobenius operator is developed. Along the book examples of applications are described, which have shown very good agreement with numerical computations. |
![]() ![]() You may like...
Origins and Foundations of Computing…
Heinz Nixdorf Museums Forum
Hardcover
The Wonder of Water - Lived Experience…
Ingrid Leman Stefanovic
Hardcover
R1,675
Discovery Miles 16 750
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
![]()
|