![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the 3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful."
This book addresses the acoustic signal analysis and spectral dynamics of the tanpura, an Indian plucked string instrument. In addition, it strives to provide a logical and objective explanation of Indian classical musicians' cognitive experience. Issues of relevance in this regard include the rich, mellifluous sound; the undulation of the loudness; the somewhat cyclical variation of the timbre, which is strongly related to these undulations; and the occasional perception of virtual notes to which no strings are tuned. The book analyses the materials used in the tanpura, the instrument's simple structure, the intricacies of the lower bridge, and the theory of string vibration with variable string length. Cognitive experiments to provide the basis for perceptual quality assessment, as well as a methodology for ranking, are described. This is followed by acoustic analyses, both temporal and spectral, for sounds produced by male and female tanpuras, for each individual string and the combined one. An important aspect related to the naturalness of perceived sound, namely the intrinsically associated random perturbations, is also discussed. The apparent irregularities perceived in the acoustic signal produced by the tanpura reveal the importance of examining the signal from the perspective of non-linear analysis, an aspect that is also covered in the book. Given its scope, the book will appeal to students and researchers in the fields of music acoustics, artificial intelligence, and cognitive science, as well as musicians and musicologists around the world.
The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer, andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thin vortex layers andtheirrolling-upintovortices, fromthevortex-corestructure, vortex motionandinteraction, totheburstofvortexlayerandvortexintosma- scalecoherentstructureswhichleadstothetransitiontoturbulence, and ?nallytothedissipationofthesmalleststructuresintoheat. 3. Wide range of topics.Inadditiontofundamentaltheoriesrelevanttothe abovesubjects, theirmostimportantapplicationsarealsopresented.This includes vortical structures in transitional and turbulent ?ows, vortical aerodynamics, and vorticity and vortices in geophysical ?ows. The last topic was suggested to be added by Late Sir James Lighthill, who read carefullyanearlydraftoftheplannedtableofcontentsofthebookin1994 andexpressedthathelikes"allthematerial"thatweproposedthere. These basic features of the present book are a continuation and - velopment of the spirit and logical structure of a Chinese monograph by the same authors, Introduction to Vorticity and Vortex Dynamics, Higher VI Preface EducationPress, Beijing,1993, butthematerialhasbeencompletelyrewr- tenandupdated.Thebookmay?tvariousneedsof?uiddynamicsscientists, educators, engineers, aswellasappliedmathematicians.Itsselectedchapters canalsobeusedastextbookforgraduatestudentsandseniorundergraduates. Thereadershouldhaveknowledgeofundergraduate?uidmechanicsand/or aerodynamicscourses.
Generalized Plasticity deals with the plasticity of materials and structures. It is an expansion of the "Unified Strength Theory to Plasticity Theory," leading to a unified treatment of metal plasticity and plasticity of geomaterials, generally. It includes the metal plasticity for Tresca materials, Huber-von-Mises materials and twin-shear materials and the geomaterial plasticity for Mohr-Coulomb materials, generalized twin-shear materials and the Unified Strength Theory.
Equations of the Ginzburg Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Holder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource."
This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
John Eargle's 4th edition of The Handbook of Recording Engineering is the latest version of his long-time classic hands-on book for aspiring recording engineers. It follows the broad outline of its predecessors, but has been completely recast for the benefit of today's training in recording and its allied arts and sciences. Digital recording and signal processing are covered in detail, as are actual studio miking and production techniques -- including the developing field of surround sound. As always, the traditional topics of basic stereo, studio acoustics, analog tape recording, and the stereo LP are covered in greater detail than you are likely to find anywhere except in archival references. This book has been completely updated with numerous new topics added and outdated material removed. Many technical descriptions are now presented in Sidebars, leaving the primary text for more general descriptions. Handbook of Recording Engineering, Fourth Edition is for students preparing for careers in audio, recording, broadcast, and motion picture sound work. It will also be useful as a handbook for professionals already in the audio workplace.
An introduction to certain aspects of developments in the modern theory of dynamics and simulation for a wide audience of scientifically literate readers. Unlike general texts on chaos theory and dynamical systems theory, this book follows the work on a specific problem at the very beginning of the modern era of dynamics, from its inception in 1954 through the early 1970s. It discusses such problems as the nonlinear oscillator simulation, the seminal discoveries at MIT in the early 1950s, the mathematical rediscovery of solitons in the late 1950s and the general problems of computability. In following these developments, the initial development of many of the now standard techniques of nonlinear modelling and numerical simulation are seen. No other text focuses so tightly and covers so completely one specific, pernicious problem at the heart of dynamics.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
There has been continuing interest in the improvement of the speed of Digital Signal processing. The use of Residue Number Systems for the design of DSP systems has been extensively researched in literature. Szabo and Tanaka have popularized this approach through their book published in 1967. Subsequently, Jenkins and Leon have rekindled the interest of researchers in this area in 1978, from which time there have been several efforts to use RNS in practical system implementation. An IEEE Press book has been published in 1986 which was a collection of Papers. It is very interesting to note that in the recent past since 1988, the research activity has received a new thrust with emphasis on VLSI design using non ROM based designs as well as ROM based designs as evidenced by the increased publications in this area. The main advantage in using RNS is that several small word-length Processors are used to perform operations such as addition, multiplication and accumulation, subtraction, thus needing less instruction execution time than that needed in conventional 16 bitl32 bit DSPs. However, the disadvantages of RNS have b. een the difficulty of detection of overflow, sign detection, comparison of two numbers, scaling, and division by arbitrary number, RNS to Binary conversion and Binary to RNS conversion. These operations, unfortunately, are computationally intensive and are time consuming."
Over the last few years it has become apparent that fluid turbulence shares many common features with plasma turbulence, such as coherent structures and self-organization phenomena, passive scalar transport and anomalous diffusion. This book gathers very high level, current papers on these subjects. It is intended for scientists and researchers, lecturers and graduate students because of the review style of the papers.
The Milky Way Galaxy offers a unique opportunity to study the structure and contents of a major stellar system in three dimensions, at high spatial and spectral resolution, and to very large galactocentric distances. This potential can be realised only by statistical surveys of large areas of the sky, and by detailed study of specific regions with exceptional properties, such as the Galactic centre, and of specific classes of object, such as the globular clusters. The acquisition of such data from a variety of ground-based and satellite surveys has been a primary topic of Galactic research for some years. Several such surveys have been completed recently, and have led to a substantial modification of our understanding of Galactic structure and evolution. The importance of the ability of satellite observatories to survey and to study wavelengths which are inaccessible from the ground is evident in the wealth of data discussed and analysed in this volume which is derived from satellites, specifically COS-B, HEAD-I, HEAO-3, IRAS, PIONEER-lO, SAS-2, and TENMA. The cru cial role of ground-based observations to complement and comprehend the satellite data is also well evident. Similarly, the major ground-based studies whose results are reported here illustrate the necessity for carefully conceived and executed very large scale surveys of many types of object and many parts of parameter space before a coherent picture of the Galaxy will be available."
This book was written to give energy-involved professionals the tools they need to take their energy audits to the next level, and use them to accurately predict a building's future energy use and true savings potential. Going beyond the conventional energy audit, which can lead to projections which are frequently off by as much as 20%, this book provides detailed guidelines on how to use the new tool, the investment grade audit (IGA), which enables prediction of savings with much greater accuracy. Building on the traditional audit, the IGA requires the addition of a "risk assessment component" which evaluates conditions in a specific building and/or process and reduces the level of uncertainty as to how proposed energy efficiency measures will really behave over time. The authors have covered every aspect of the IGA, including risk management, the "people" factor, measurement and verification, financing issues, report presentation guidelines, and master planning strategies.
This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In Connectivity and Superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
* The books is very timely: Many expect a return to business as usual after Covid19, but the bigger problem of life-threatening climate change makes it clear that the way humans live and work must change. * The book is informative and stimulating: As technological progress made, it is important that those who need to know are informed. This includes both interested members of the public as well as key policy makers and other climate change stakeholders. * The book is controversial: The degree of change is large, with winners and losers coming from ideas and approaches that in some cases appear to contradict current thinking (e.g. electric cars). * The book is written by an expert: The author has had a distinguished career, in designing safe systems using technology pushed to the limit of optimum performance while making sure that everything is safe throughout the whole life. He has served on many advisory boards reporting at high level to the prime minister, and ministerial level both in UK, and in Indonesia.
Here is a comprehensive introduction to the least-squares finite element method (LSFEM) for numerical solution of PDEs. It covers the theory for first-order systems, particularly the div-curl and the div-curl-grad system. Then LSFEM is applied systematically to permissible boundary conditions for the incompressible Navier-Stokes equations, to show that the divergence equations in the Maxwell equations are not redundant, and to derive equivalent second-order versions of the Navier-Stokes equations and the Maxwell equations. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics, including incompressible viscous flows, rotational inviscid flows, low-Mach-number compressible flows, two-fluid and convective flows, scattering waves, etc.
The origins of turbulent ?ow and the transition from laminar to turbulent ?ow are the most important unsolved problems of ?uid mechanics and aerodynamics. - sides being a fundamental question of ?uid mechanics, there are numerous app- cations relying on information regarding transition location and the details of the subsequent turbulent ?ow. For example, the control of transition to turbulence is - pecially important in (1) skin-friction reduction of energy ef?cient aircraft, (2) the performance of heat exchangers and diffusers, (3) propulsion requirements for - personic aircraft, and (4) separation control. While considerable progress has been made in the science of laminar to turbulent transition over the last 30 years, the c- tinuing increase in computer power as well as new theoretical developments are now revolutionizing the area. It is now starting to be possible to move from simple 1D eigenvalue problems in canonical ?ows to global modes in complex ?ows, all - companied by accurate large-scale direct numerical simulations (DNS). Here, novel experimental techniques such as modern particle image velocimetry (PIV) also have an important role. Theoretically the in?uence of non-normality on the stability and transition is gaining importance, in particular for complex ?ows. At the same time the enigma of transition in the oldest ?ow investigated, Reynolds pipe ?ow tran- tion experiment, is regaining attention. Ideas from dynamical systems together with DNS and experiments are here giving us new insights.
Stochastic elasticity is a fast developing field that combines nonlinear elasticity and stochastic theories in order to significantly improve model predictions by accounting for uncertainties in the mechanical responses of materials. However, in contrast to the tremendous development of computational methods for large-scale problems, which have been proposed and implemented extensively in recent years, at the fundamental level, there is very little understanding of the uncertainties in the behaviour of elastic materials under large strains. Based on the idea that every large-scale problem starts as a small-scale data problem, this book combines fundamental aspects of finite (large-strain) elasticity and probability theories, which are prerequisites for the quantification of uncertainties in the elastic responses of soft materials. The problems treated in this book are drawn from the analytical continuum mechanics literature and incorporate random variables as basic concepts along with mechanical stresses and strains. Such problems are interesting in their own right but they are also meant to inspire further thinking about how stochastic extensions can be formulated before they can be applied to more complex physical systems.
Duringthe PersianGulfWaragroupofAmericansoldiersscoopedup anew recruitatRijaid Airport, thendrovehim, withblackenedheadlights, directly across miles oftractless desertsand.Squintingtoward the horizon, hecould see almost nothing when suddenly the driver mashed on the brakes, gave him a quick salute, and instructed him to step out into the darkness. As his bootssankintothesand, hewasstunned torealizethathewasonlyafew feet away from the flap of his tent. Before setting out, the driver had keyed the tent'scoordinates into a Navstar receiver, so itcould guide him back again. No one knows exactly how many Navstar receivers ended up serving coalition forces along the Persian Gulf because mothers and fathers-and sweethearts, too-located a few stray units on the shelves of marinesupply houses/plunked down their money, and express mailed them to their loved ones in the Persian Gulf. A few resourceful soldiers called stateside suppliers long distance, then used their credit cards to order receivers, many of which arrived in Saudi Arabiaa dayortwolateraboardcommercialjetliners. Bythe timetheground war finally started, 4,000 to 7,000 Navstar receivers were clutched in the hands of grateful American soldiers. They were used to guide fuel-starved airplanes for linkups with aerial tankers, to pull in air strikes against enemy emplacements, to guide mess trucks toward hungry troops, and to vector Special Forcesunits intheir muffled dune buggies deep behindenemylines. Afew enterprising military engineers learned how to follow meandering goat trails so they could locate underground springs where the goats wa tered themselves. They then used their hand-held Navstar receivers to record the precise coordinates of each spring, thus insuring fresh water supplies for onrushing troops." |
![]() ![]() You may like...
Acoustic Microscopy - Second Edition
Andrew Briggs, Oleg Kolosov
Hardcover
R4,678
Discovery Miles 46 780
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,557
Discovery Miles 25 570
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R943
Discovery Miles 9 430
Fluid Dynamics - Part 1: Classical Fluid…
Anatoly I. Ruban, Jitesh S. B. Gajjar
Hardcover
R2,400
Discovery Miles 24 000
Classical Mechanics - Pearson New…
Herbert Goldstein, John Safko, …
Paperback
R2,131
Discovery Miles 21 310
Advanced General Relativity - Gravity…
Claude Barrabes, Peter A. Hogan
Hardcover
R4,281
Discovery Miles 42 810
|