![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design > Computer aided design (CAD)
Master the complexities of the world's bestselling 2D and 3D software with Alf Yarwood's new Introduction to AutoCAD 2012. Ideally suited to new users of AutoCAD, this book will be a useful resource for drawing modules in both vocational and introductory undergraduate courses in engineering and construction. Alf Yarwood has once again produced a comprehensive, step-by-step introduction to the latest release of AutoCAD. Covering all the basic principles and acting as an introduction to 2D drawing, it also contains extensive coverage of all 3D topics, including 3D solid modelling and rendering. A fold-out list of frequently used keyboard shortcuts will help you perform actions quickly while working through the book, and an appendix of ribbon references clearly describes all the software tools that are used throughout the book. Further education students in the UK will find this an invaluable textbook for City and Guilds AutoCAD qualifications as well as the relevant Computer Aided Drawing units of BTEC National Engineering, Higher National Engineering and Construction courses from Edexcel. Students enrolled in Foundation Degree courses containing CAD modules will also find this a very useful reference and learning aid.
This book discusses the latest advances in people-centered design, operation, and management of broadly defined advanced manufacturing systems and processes. It reports on human factors issues related to various research areas such as intelligent manufacturing technologies, web-based manufacturing services, digital manufacturing worlds, and manufacturing knowledge support systems, as well as other contemporary manufacturing environments. The book covers an extensive range of applications of human factors in the manufacturing industry: from work design, supply chains, evaluation of work systems, and social and organization design, to manufacturing systems, simulation and visualization, automation in manufacturing, and many others. Special emphasis is given to computer aided manufacturing technologies supporting enterprises, both in general and in the manufacturing industry in particular, such as knowledge-based systems, virtual reality, artificial intelligence methods, and many more. Based on the AHFE 2017 International Conference on Human Aspects of Advanced Manufacturing, held on July 17-21, 2017, in Los Angeles, California, USA, the book provides readers with a timely snapshot of the enterprises of the future and a set of cutting-edge technologies and methods for building innovative, human-centered, and computer-integrated manufacturing systems.
Learn physics, engineering, and geology concepts usually seen in high school and college in an easy, accessible style. This second volume addresses these topics for advanced science fair participants or those who just like reading about and understanding science. 3D Printed Science Project Volume 2 describes eight open-source 3D printable models, as well as creative activities using the resulting 3D printed pieces. The files are designed to print as easily as possible, and the authors give tips for printing them on open source printers. As 3D printers become more and more common and affordable, hobbyists, teachers, parents, and students stall out once they've printed some toys and a few household items. To get beyond this, most people benefit from a "starter set" of objects as a beginning point in their explorations, partially just to see what is possible. This book tells you the solid science stories that these models offer, and provides them in open-source repositories. What You Will Learn Create (and present the science behind) 3D printed models Review innovative ideas for tactile ways to learn concepts in engineering, geology and physics Learn what makes a models easy or hard to 3D print Who This Book Is For The technology- squeamish teacher and parents who want their kids to learn something from their 3D printer but don't know how, as well as high schoolers and undergraduates.
Describes a small verification library with a concentration on user adaptability such as re-useable components, portable Intellectual Property, and co-verification. Takes a realistic view of reusability and distills lessons learned down to a tool box of techniques and guidelines.
This textbook is written for junior/senior undergraduate and first-year graduate students in the electrical and computer engineering departments. Using PSoC mixed-signal array design, the authors define the characteristics of embedd design, embedded mixed-signal architectures, and top-down design. Optimized implementations of these designs are included to illustrate the theory. Exercises are provided at the end of each chapter for practice. Topics covered include the hardware and software used to implement analog and digital interfaces, various filter structures, amplifiers and other signal-conditioning circuits, pulse-width modulators, timers, and data structures for handling multiple similar peripheral devices. The practical exercises contained in the companion laboratory manual, which was co-authored by Cypress Staff Applications Engineer Dave Van Ess, are also based on PSoC. PSoC's integrated microcontroller, highly configurable analog/digital peripherals, and a full set of development tools make it an ideal learning tool for developing mixed-signal embedded design skills.
Here is a book that takes the sting out of learning object-oriented design patterns! Using vignettes from the fictional world of Harry Potter, author Avinash C. Kak provides a refreshing alternative to the typically abstract and dry object-oriented design literature. Designing with Objects is unique. It explains design patterns using the short-story medium instead of sterile examples. It is the third volume in a trilogy by Avinash C. Kak, following Programming with Objects (Wiley, 2003) and Scripting with Objects (Wiley, 2008). Designing with Objects confronts how difficult it is for students to learn complex patterns based on conventional scenarios that they may not be able to relate to. In contrast, it shows that stories from the fictional world of Harry Potter provide highly relatable and engaging models. After explaining core notions in a pattern and its typical use in real-world applications, each chapter shows how a pattern can be mapped to a Harry Potter story. The next step is an explanation of the pattern through its Java implementation. The following patterns appear in three sections: Abstract Factory, Builder, Factory Method, Prototype, and Singleton; Adapter, Bridge, Composite, Decorator, Facade, Flyweight, and Proxy; and the Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy, Template Method, and Visitor. For readers use, Java code for each pattern is included in the book s companion website. * All code examples in the book are available for download on a companion website with resources for readers and instructors. * A refreshing alternative to the abstract and dry explanations of the object-oriented design patterns in much of the existing literature on the subject. * In 24 chapters, Designing with Objects explains well-known design patterns by relating them to stories from the fictional Harry Potter series
The treatise supports understanding the phenomena of complexity in engineering, distinguishes complexity from other challenges and presents an overview of definitions and applied approaches.The historical background of complexity management is explained by highlighting the important epochs, their key actors and their discoveries, findings and developments. Knowing about the appearance of early system awareness in ancient Greece, the creation of mechanical philosophy in the 17th century and the discovery of classic physics enables the reader to better comprehend modern system sciences and management approaches.A classification of complexity management approaches by research fields indicates current focus areas and starting points for future discussions. In a comprehensive map, the classification points out mutual overlaps between engineering disciplines in terms of similar complexity management approaches.Finally, the treatise introduces a generic complexity management framework, which is based on structural management approaches.
This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular, and high performing in terms of the types of shape that it can represent.
This book constitutes the proceedings of the 13th International Symposium on Smart Graphics, SG 2015, held in Chengdu, China, in August 2015. The 17 full and 3 short papers presented in this volume were carefully reviewed and selected from 35 submissions. They are organized in topical sections named: graphics, sketching and visualization, automation and evaluation, image processing, and posters and demo session.
Create high-quality photorealistic renders of architectural visualizations using 3ds Max and Vray with the project-based tutorials in this book. Learn how to combine lighting and rendering options to end-up with the most realistic final renders possible at a professional level. The tutorials in this book are filled with beautiful full-color images and they teach you how to light both interiors and exteriors and daytime and nighttime scenes. Learn how to save time without sacrificing the quality of your final renders with tips and tricks on rendering with Vray - the most accurate rendering application for 3ds Max. The downloadable resources include all the project files that you need to recreate each of the projects presented within the book. Please note that this book does not support the current versions of 3ds Max and V-Ray. Topics include:
* Provides simple, conceptual descriptions of everyday technologies * Includes clear examples and diagrams that demonstrate the principles and techniques, not just a "how-to" punch list * Covers advanced topics for readers who want to dive into the deep end of the technology pool * Avoids jargon-where terminology does appear, the text will provide clear, concise definitions
Computer Architectures is a collection of multidisciplinary historical works unearthing sites, concepts, and concerns that catalyzed the cross-contamination of computers and architecture in the mid-20th century. Weaving together intellectual, social, cultural, and material histories, this book paints the landscape that brought computing into the imagination, production, and management of the built environment, whilst foregrounding the impact of architecture in shaping technological development. The book is organized into sections corresponding to the classic von Neumann diagram for computer architecture: program (control unit), storage (memory), input/output and computation (arithmetic/logic unit), each acting as a quasi-material category for parsing debates among architects, engineers, mathematicians, and technologists. Collectively, authors bring forth the striking homologies between a computer program and an architectural program, a wall and an interface, computer memory and storage architectures, structures of mathematics and structures of things. The collection initiates new histories of knowledge and technology production that turn an eye toward disciplinary fusions and their institutional and intellectual drives. Constructing the common ground between design and computing, this collection addresses audiences working at the nexus of design, technology, and society, including historians and practitioners of design and architecture, science and technology scholars, and media studies scholars.
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS (R), a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS (R) commands and ANSYS (R) screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS (R) through both the Graphics User Interface (GUI) and the ANSYS (R) Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: * An introduction to FEM * Fundamentals and analysis capabilities of ANSYS (R) * Fundamentals of discretization and approximation functions * Modeling techniques and mesh generation in ANSYS (R) * Weighted residuals and minimum potential energy * Development of macro files * Linear structural analysis * Heat transfer and moisture diffusion * Nonlinear structural problems * Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS (R)-GUI Electronic supplementary material for using ANSYS (R) can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader's own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
The Virtual and the Real in Planning and Urban Design: Perspectives, Practices and Applicationsexplores the merging relationship between physical and virtual spaces in planning and urban design. Technological advances such as smart sensors, interactive screens, locative media and evolving computation software have impacted the ways in which people experience, explore, interact with and create these complex spaces. This book draws together a broad range of interdisciplinary researchers in areas such as architecture, urban design, spatial planning, geoinformation science, computer science and psychology to introduce the theories, models, opportunities and uncertainties involved in the interplay between virtual and physical spaces. Using a wide range of international contributors, from the UK, USA, Germany, France, Switzerland, Netherlands and Japan, it provides a framework for assessing how new technology alters our perception of physical space.
This book constitutes the refereed post-proceedings of the 11th IFIP WG 5.1 International Conference on Product Lifecycle Management, PLM 2014, held in Yokohama, Japan, in July 2014. The 51 full papers presented were carefully reviewed and selected from 77 submissions. They are organized in the following topical sections: BIM operations, maintenance, and renovation; BIM concepts and lifecycle management; design and education; naval engineering and shipbuilding; aeronautical and automotive engineering; industry and consumer products; interoperability, integration, configuration, systems engineering; change management and maturity; knowledge engineering; knowledge management; service and manufacturing; and new PLM.
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
How can we optimize a bedridden patient's mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner's shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. This book is intended for engineers, manufacturers and physicians and also provides students with guidance in solving problems related to support system optimization.
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.
Based on the competition of international production networks, the pressure to - crease the efficiency of production systems has increased significantly. In ad- tion, the number of technical components in many products and as a consequence also the requirements for corresponding assembly processes and logistics pr- esses increases. International logistics networks require corresponding logistics concepts. These requirements can be managed only by using appropriate Digital Factory tools in the context of a product lifecycle management environment, which allows reusing data, supports an effective cooperation between different departments, and provides up-to-date and relevant data to every user who needs it. Simulating the complete material flow including all relevant production, st- age, and transport activities is recognized as a key component of the Digital F- tory in the industry and as of today widely used and accepted. Cutting inventory and throughput time by 20-60% and enhancing the productivity of existing p- duction facilities by 15-20% can be achieved in real-life projects.
Describing a new optimization algorithm, the "Teaching-Learning-Based Optimization (TLBO)," in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners' results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
Manufacturing industry has been one of the key drivers for recent rapid global economic development. Globalisation of manufacturing industries due to distributed design and labour advantage leads to a drive and thirst for technological advancements and expertise in the fields of advanced design and manufacturing. This development results in many economical benefits to and improvement of quality of life for many people all over the world. This rapid development also creates many opportunities and challenges for both industrialists and academics, as the design requirements and constraints have completely changed in this global design and manufacture environment. Consequently the way to design, manufacture and realise products have changed as well. More and more design and manufacture tasks can now be undertaken within computer environment using simulation and virtual reality technologies. These technological advancements hence support more advanced product development and manufacturing operations in such a global design and manufacturing environment. In this global context and scenario, both industry and the academia have an urgent need to equip themselves with the latest knowledge, technology and methods developed for engineering design and manufacture.
This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.
This book constitutes the refereed proceedings of the 15th International Conference on Systems Simulation, Asia Simulation 2015, held in Jeju, Korea, in November 2016.The 11 revised full papers presented were carefully reviewed and selected from 126 submissions. The papers are organized in topical sections on model and design; simulation and analysis.
Designed to provide tools for independent study, this book contains student-tested mathematical exercises joined with MATLAB programming exercises. Most chapters open with a review followed by theoretical and programming exercises, with detailed solutions provided for all problems including programs. Many of the MATLAB exercises are presented as Russian dolls: each question improves and completes the previous program and results are provided to validate the intermediate programs. The book offers useful MATLAB commands, advice on tables, vectors, matrices and basic commands for plotting. It contains material on eigenvalues and eigenvectors and important norms of vectors and matrices including perturbation theory; iterative methods for solving nonlinear and linear equations; polynomial and piecewise polynomial interpolation; Bezier curves; approximations of functions and integrals and more. The last two chapters considers ordinary differential equations including two point boundary value problems, and deal with finite difference methods for some partial differential equations. The format is designed to assist students working alone, with concise Review paragraphs, Math Hint footnotes on the mathematical aspects of a problem and MATLAB Hint footnotes with tips on programming.
A definitive user's guide to the U.S. National CAD Standard The Architect's Guide to the U.S. National CAD Standard presents
an informative overview of the NCS, including illustrations and
frequently asked questions. It shows architects how to minimize
immediate costs and downtime, how to reap immediate benefits, and
how best to learn the system at an individualized pace. Used side
by side with the Standard, this authoritative guide offers helpful
insight into how the NCS is likely to be interpreted and presents a
variety of available options for meeting the standardization
requirements. |
![]() ![]() You may like...
A Fragmented Landscape - Abortion…
Silvia De Zordo, Joanna Mishtal, …
Paperback
R864
Discovery Miles 8 640
Giving Well - The Ethics of Philanthropy
Patricia Illingworth, Thomas Pogge, …
Hardcover
R1,884
Discovery Miles 18 840
Reading Our Lives - The poetics of…
William L. Randall, Elizabeth McKim
Hardcover
R1,555
Discovery Miles 15 550
|