![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > Computer aided design (CAD)
In recent years, both Networks-on-Chip, as an architectural solution for high-speed interconnect, and power consumption, as a key design constraint, have continued to gain interest in the design and research communities. This book offers a single-source reference to some of the most important design techniques proposed in the context of low-power design for networks-on-chip architectures.
This book presents an overview of the issues related to the test, diagnosis and fault-tolerance of Network on Chip-based systems. It is the first book dedicated to the quality aspects of NoC-based systems and will serve as an invaluable reference to the problems, challenges, solutions, and trade-offs related to designing and implementing state-of-the-art, on-chip communication architectures.
Geometric modelling has been an important and interesting subject for many years from the purely mathematical and computer science viewpoint, and also from the standpoint of engineering and various other applications, such as CAD/CAM, entertainment, animation, and multimedia. This book focuses on the interaction between the theoretical foundation of geometric modelling and practical applications in CAD and related areas. Geometric Modelling: Theoretical and Computational Basis towards Advanced CAD Applications starts with two position papers, discussing basic computational theory and practical system solutions. The well-organized seven review papers give a systematic overview of the current situation and deep insight for future research and development directions towards the reality of shape representation and processing. They discuss various aspects of important issues, such as geometric computation for space search and shape generation, parametric modelling, feature modelling, user interface for geometric modelling, geometric modelling for the Next Generation CAD, and geometric/shape standard. Other papers discuss features and new research directions in geometric modelling, solid modeling, free-form surface modeling, intersection calculation, mesh modeling and reverse engineering. They cover a wide range of geometric modelling issues to show the problem scope and the technological importance. Researchers interested in the current status of geometric modelling research and developments will find this volume to be an essential reference.
This book of proceedings is the synthesis of all the papers, including keynotes presented during the 20th CIRP Design conference. The book is structured with respect to several topics, in fact the main topics that serve at structuring the program. For each of them, high quality papers are provided. The main topic of the conference was Global Product Development. This includes technical, organizational, informational, theoretical, environmental, performance evaluation, knowledge management, and collaborative aspects. Special sessions were related to innovation, in particular extraction of knowledge from patents.
This volume contains the refereed and revised papers of the Fourth International Conference on Design Computing and Cognition (DCC'10), held in Stuttgart, Germany. The material in this book represents the state-of-the-art research and developments in design computing and design cognition. The papers are grouped under the following nine headings, describing both advances in theory and application and demonstrating the depth and breadth of design computing and design cognition: Design Cognition; Framework Models in Design; Design Creativity; Lines, Planes, Shape and Space in Design; Decision-Making Processes in Design; Knowledge and Learning in Design; Using Design Cognition; Collaborative/Collective Design; and Design Generation. This book is of particular interest to researchers, developers and users of advanced computation in design across all disciplines and to those who need to gain better understanding of designing.
This book provides readers with a comprehensive review of the state of the art in error control for Network on Chip (NOC) links. Coverage includes detailed description of key issues in NOC error control faced by circuit and system designers, as well as practical error control techniques to minimize the impact of these errors on system performance.
As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cross coupling effects between wires altogether. Newer tools simply approximate the coupling capacitance by a 2X Miller factor in order to compute the worst case delay. The latter approach not only reduces delay calculation accuracy, but can also be shown to underestimate the delay in certain scenarios. This book describes accurate but conservative methods for computing delay variation due to coupling. Furthermore, most of these methods are computationally efficient enough to be employed in a static timing analysis tool for complex integrated digital circuits. To achieve accuracy, a more accurate computation of the Miller factor is derived. To achieve both computational efficiency and accuracy, a variety of mechanisms for pruning the search space are detailed, including: -Spatial pruning - reducing aggressors to those in physical proximity, -Electrical pruning - reducing aggressors by electrical strength, -Temporal pruning - reducing aggressors using timing windows, -Functional pruning - reducing aggressors by Boolean functional analysis.
This book covers the practical application of dependable electronic systems in real industry, such as space, train control and automotive control systems, and network servers/routers. The impact from intermittent errors caused by environmental radiation (neutrons and alpha particles) and EMI (Electro-Magnetic Interference) are introduced together with their most advanced countermeasures. Power Integration is included as one of the most important bases of dependability in electronic systems. Fundamental technical background is provided, along with practical design examples. Readers will obtain an overall picture of dependability from failure causes to countermeasures for their relevant systems or products, and therefore, will be able to select the best choice for maximum dependability.
This book tackles head-on the challenges of digital design in the era of billion-transistor SoCs. It discusses fundamental design concepts in design and coding required to produce robust, functionally correct designs. It also provides specific techniques for measuring and minimizing complexity in RTL code. Finally, it discusses the tradeoff between RTL and high-level (C-based) design and how tools and languages must progress to address the needs of tomorrow's SoC designs.
This book presents new results on applications of geometric algebra. The time when researchers and engineers were starting to realize the potential of quaternions for - plications in electrical, mechanic, and control engineering passed a long time ago. Since the publication of Space-Time Algebra by David Hestenes (1966) and Clifford Algebra to Geometric Calculus: A Uni?ed Language for Mathematics and Physics by David Hestenes and Garret Sobczyk (1984), consistent progress in the app- cations of geometric algebra has taken place. Particularly due to the great dev- opments in computer technology and the Internet, researchers have proposed new ideas and algorithms to tackle a variety of problems in the areas of computer science and engineering using the powerful language of geometric algebra. In this process, pioneer groups started the conference series entitled "Applications of Geometric Algebra in Computer Science and Engineering" (AGACSE) in order to promote the research activity in the domain of the application of geometric algebra. The ?rst conference, AGACSE'1999, organized by Eduardo Bayro-Corrochano and Garret Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contri- tions were published in Geometric Algebra with Applications in Science and En- neering, Birkhauser, 2001. The second conference, ACACSE'2001, was held in the Engineering Department of the Cambridge University on 9-13 July 2001 and was organizedbyLeoDorst,ChrisDoran,andJoanLasenby. Thebestconferencecont- butions appeared as a book entitled Applications of Geometric Algebra in Computer Science and Engineering, Birkhauser, 2002. The third conference, AGACSE'2008, took place in August 2008 in Grimma, Leipzig, Germany.
Cartesian Genetic Programming (CGP) is a highly effective and increasingly popular form of genetic programming. It represents programs in the form of directed graphs, and a particular characteristic is that it has a highly redundant genotype-phenotype mapping, in that genes can be noncoding. It has spawned a number of new forms, each improving on the efficiency, among them modular, or embedded, CGP, and self-modifying CGP. It has been applied to many problems in both computer science and applied sciences. This book contains chapters written by the leading figures in the development and application of CGP, and it will be essential reading for researchers in genetic programming and for engineers and scientists solving applications using these techniques. It will also be useful for advanced undergraduates and postgraduates seeking to understand and utilize a highly efficient form of genetic programming.
The importance of research and education in design continues to grow. For example, government agencies are gradually increasing funding of design research, and increasing numbers of engineering schools are revising their curricula to emphasize design. This is because of an increasing realization that design is part of the wealth creation of a nation and needs to be better understood and taught. The continuing globalization of industry and trade has required nations to re-examine where their core contributions lie if not in production efficiency. Design is a precursor to manufacturing for phy- cal objects and is the precursor to implementation for virtual objects. At the same time, the need for sustainable development is requiring design of new products and processes, and feeding a movement towards design - novations and inventions. There are now three sources for design research: design computing, design cognition and human-centered information technology. The foun- tions for much of design computing remains artificial intelligence with its focus on ways of representation and on processes that support simulation and generation. Artificial intelligence continues to provide an environm- tally rich paradigm within which design research based on computational constructions can be carried out. Design cognition is founded on concepts from cognitive science, an even newer area than artificial intelligence. It provides tools and methods to study human designers in both laboratory and practice settings.
This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2012, held in Oslo, Norway, in June/July 2012. The 28 revised full papers presented were carefully reviewed and selected from 135 submissions. The topics range from mathematical analysis of various methods to practical implementation on modern graphics processing units. The papers reflect the newest developments in these fields and also point to the latest literature.
From the reviews: "[...] a welcome addition to the literature. [...] This book promises to make a valuable contribution to the education of graduate students in electrical and computer engineering, and a very useful addition to the library of the maturer investigator in SoC designs or related fields." Microelectronics Reliability
Computation and communication technologies underpin work and development in many different areas. Among them, Computer-Aided Design of electronic systems and eLearning technologies are two areas which, though different, in fact share many concerns. The design of CAD and eLearning systems already touches on a number of parallels, such as system interoperability, user interfaces, standardisation, XML-based formats, reusability aspects, etc. Furthermore, the teaching of Design Automation tools and methods is particularly amenable to a distant or blended learning setting, and implies the interconnection of typical CAD tools, such as simulators or synthesis tools, with eLearning tools. There are many other aspects in which synergy can be found when using eLearning technology for teaching and learning technology. EduTech: Computer-Aided Design Meets Computer-Aided Learning contains the proceedings of the EduTech2004 workshop, which was held in August 2004 in conjunction with the 18th IFIP World Computer Congress in Toulouse, France, and sponsored by the International Federation for Information Processing (IFIP). Organized by IFIP WG 10.5 (Design and Engineering of Electronic Systems) in cooperation with IFIP WG 3.6 (Distance Education), the workshop proceedings explore the interrelationship between these two subjects, where computer-aided design meets computer-aided learning. The book includes papers related to eLearning in the area of electronic CAD, but also includes contributions tackling general issues of eLearning that are applicable to this and many other areas such as reusability, standards, open source tools or mobility. This book will be of value to those interested in the latest developments in eLearning in general, and also to those coming from the electronic design field who want to know how to apply these developments in their area.
Synthesis and Optimization of DSP Algorithms describes approaches taken to synthesising structural hardware descriptions of digital circuits from high-level descriptions of Digital Signal Processing (DSP) algorithms. The book contains: -A tutorial on the subjects of digital design and architectural synthesis, intended for DSP engineers, -A tutorial on the subject of DSP, intended for digital designers, -A discussion of techniques for estimating the peak values likely to occur in a DSP system, thus enabling an appropriate signal scaling. Analytic techniques, simulation techniques, and hybrids are discussed. The applicability of different analytic approaches to different types of DSP design is covered, -The development of techniques to optimise the precision requirements of a DSP algorithm, aiming for efficient implementation in a custom parallel processor. The idea is to trade-off numerical accuracy for area or power-consumption advantages. Again, both analytic and simulation techniques for estimating numerical accuracy are described and contrasted. Optimum and heuristic approaches to precision optimisation are discussed, -A discussion of the importance of the scheduling, allocation, and binding problems, and development of techniques to automate these processes with reference to a precision-optimized algorithm, -Future perspectives for synthesis and optimization of DSP algorithms.
Analog Behavioral Modeling With The Verilog-A Language provides the IC designer with an introduction to the methodologies and uses of analog behavioral modeling with the Verilog-A language. In doing so, an overview of Verilog-A language constructs as well as applications using the language are presented. In addition, the book is accompanied by the Verilog-A Explorer IDE (Integrated Development Environment), a limited capability Verilog-A enhanced SPICE simulator for further learning and experimentation with the Verilog-A language. This book assumes a basic level of understanding of the usage of SPICE-based analog simulation and the Verilog HDL language, although any programming language background and a little determination should suffice. From the Foreword: `Verilog-A is a new hardware design language (HDL) for analog circuit and systems design. Since the mid-eighties, Verilog HDL has been used extensively in the design and verification of digital systems. However, there have been no analogous high-level languages available for analog and mixed-signal circuits and systems. Verilog-A provides a new dimension of design and simulation capability for analog electronic systems. Previously, analog simulation has been based upon the SPICE circuit simulator or some derivative of it. Digital simulation is primarily performed with a hardware description language such as Verilog, which is popular since it is easy to learn and use. Making Verilog more worthwhile is the fact that several tools exist in the industry that complement and extend Verilog's capabilities ... Behavioral Modeling With the Verilog-A Language provides a good introduction and starting place for students and practicing engineers with interest in understanding this new level of simulation technology. This book contains numerous examples that enhance the text material and provide a helpful learning tool for the reader. The text and the simulation program included can be used for individual study or in a classroom environment ...' Dr. Thomas A. DeMassa, Professor of Engineering, Arizona State University
This unique book provides an overview of the current state of the art and very recent research results that have been achieved as part of the Low-Power Initiative of the European Union, in the field of analogue, RF and mixed-signal design methodologies and CAD tools.
Behavioral Synthesis: A Practical Guide to High-Level Design includes details on new material and new interpretations of old material with an emphasis on practical information. The intended audience is the ASIC (or high-end FPGA) designer who will be using behavioral synthesis, the manager who will be working with those designers, or the engineering student who is studying leading-edge design techniques. Today's designs are creating tremendous pressures for digital designers. Not only must they compress more functionality onto a single IC, but this has to be done on shorter schedules to stay ahead in extremely competitive markets. To meet these opposing demands, designers must work at a new, higher level of abstraction to efficiently make the kind of architectural decisions that are critical to the success of today's complex designs. In other words, they must include behavioral design in their flow. The biggest challenge to adopting behavioral design is changing the mindset of the designer. Instead of describing system functionality in great detail, the designer outlines the design in broader, more abstract terms. The ability to easily and efficiently consider multiple design alternatives over a wide range of cost and performance is an extremely persuasive reason to make this leap to a high level of abstraction. Designers that learn to think and work at the behavioral level will reap major benefits in the resultant quality of the final design. But such changes in methodology are difficult to achieve rapidly. Education is essential to making this transition. Many designers will recall the difficulty transitioning from schematic-based design to RTL design. Designers that were new to the technology often felt that they had not been told enough about how synthesis worked and that they were not taught how to effectively write HDL code that would synthesize efficiently. Using this unique book, a designer will understand what behavioral synthesis tools are doing (and why) and how to effectively describe their designs that they are appropriately synthesized. CD ROM INCLUDED! The accompanying CD-ROM contains the source code and test benches for the three case studies discussed in Chapters 14, 15 and 16.
Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.
From the reviews: "This book crystallizes what may become a defining moment in the electronics industry - the shift to platform-based design. It provides the first comprehensive guidebook for those who will build, and use, the integration platforms that may soon drive the system-on-chip revolution." Electronic Engineering Times
The Verilog Hardware Description Language (Verilog-HDL) has long been the most popular language for describing complex digital hardware. It started life as a prop- etary language but was donated by Cadence Design Systems to the design community to serve as the basis of an open standard. That standard was formalized in 1995 by the IEEE in standard 1364-1995. About that same time a group named Analog Verilog International formed with the intent of proposing extensions to Verilog to support analog and mixed-signal simulation. The first fruits of the labor of that group became available in 1996 when the language definition of Verilog-A was released. Verilog-A was not intended to work directly with Verilog-HDL. Rather it was a language with Similar syntax and related semantics that was intended to model analog systems and be compatible with SPICE-class circuit simulation engines. The first implementation of Verilog-A soon followed: a version from Cadence that ran on their Spectre circuit simulator. As more implementations of Verilog-A became available, the group defining the a- log and mixed-signal extensions to Verilog continued their work, releasing the defi- tion of Verilog-AMS in 2000. Verilog-AMS combines both Verilog-HDL and Verilog-A, and adds additional mixed-signal constructs, providing a hardware description language suitable for analog, digital, and mixed-signal systems. Again, Cadence was first to release an implementation of this new language, in a product named AMS Designer that combines their Verilog and Spectre simulation engines.
Writing Testbenches: Functional Verification of HDL Models first introduces the necessary concepts and tools of verification, then describes a process for carrying out an effective functional verification of a design. This book also presents techniques for applying a stimulus and monitoring the response of a design by abstracting the operations using bus-functional models. The architecture of testbenches built around these bus-functional models is important for minimizing development and maintenance effort. Behavioral modeling is another important concept presented in this book. It is used to parallelize the implementation and verification of a design and to perform more efficient simulations. For many, behavioral modeling is synonymous with synthesizeable or RTL modeling. In this book, the term 'behavioural' is used to describe any model that adequately emulates the functionality of a design, usually using non-synthesizeable constructs and coding style. Writing Testbenches: Functional Verification of HDL Models focuses on the functional verification of hardware designs using either VHDL or Verilog.The reader should have at least a basic knowledge of one of the languages. Ideally, he or she should have experience in writing synthesizeable models and be familiar with running a simulation using any of the available VHDL or Verilog simulators. From the Foreword 'With gate counts and system complexity growing exponentially, engineers confront the most perplexing challenge in product design: functional verification. The bulk of the time consumed in the design of new ICs and systems is now spent on verification. New and interesting design technologies like physical synthesis and design reuse that create ever- larger designs only aggravate the problem. What the EDA tool industry has continuously failed to realize is that the real problem is not how to create a 12 million gate IC that runs at 600 MHz, but how to verify it. This text marks the first genuine effort at defining a verification methodology that is independent of both tools and applications. Engineers now have a true reference text for quickly and accurately verifying the functionality of their designs.' Michael Horne, President and CEO, Qualis Design Corporation
This book constitutes the refereed proceedings of the 11th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2014, held in Seattle, WA, USA, in September 2014. The 33 full and 10 short papers presented were carefully reviewed and selected from 78 submissions. The papers cover topics such as cloud technology; the use of cloud for manufacturing, re-source selection, service evaluation, and control; methods for processing and visualizing big data created by the social media, such as Twitter and Facebook; real-time data about human interaction; sentiment analysis; trend analysis; location-based crowdsourcing; effective teamwork; cooperative visualization.
What is 'design creativity'? It is impossible to answer this question without considering why human beings can - and do - 'design'. Design creativity is instrumental in not only addressing social problems faced across the world, but also evoking an innate appreciation for beauty and a sense of personal contentment. Design Creativity 2010 comprises advanced research findings on design creativity and perspectives on future directions of design creativity research. The papers included were presented and discussed at the first ICDC (International Conference on Design Creativity), which was held at Kobe, Japan, in 2010. Design Creativity 2010 encourages readers to enhance and expand their activities in the field of design creativity. |
You may like...
A Handbook of Artificial Intelligence in…
Anil K. Philip, Aliasgar Shahiwala, …
Paperback
R2,963
Discovery Miles 29 630
Advances in Optimization and Decision…
Massimo Paolucci, Anna Sciomachen, …
Hardcover
R1,568
Discovery Miles 15 680
Proceedings of the 21st International…
Xiangmin Jiao, Jean-Christophe Weill
Hardcover
R5,258
Discovery Miles 52 580
Hardware Based Packet Classification for…
Chad R. Meiners, Alex X. Liu, …
Hardcover
R2,721
Discovery Miles 27 210
|