![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design
Gain a strong foundation of core WSO2 ESB concepts and acquire a proven set of guidelines designed to get you started with WSO2 ESB quickly and efficiently. This book focuses on the various enterprises integration capabilities of WSO2 ESB along with a broad range of examples that you can try out. From beginning to the end, Beginning WSO2 ESB effectively guides you in gradually building expertise in enterprise integration with WSO2 ESB for your SOA infrastructure. Nowadays successful enterprises rely heavily on how well the underlying software applications and services work together to produce a unified business functionality. This enterprise integration is facilitated by an Enterprise Service Bus (ESB). This book provides comprehensive coverage of the fundamentals of the WSO2 ESB and its capabilities, through real-world enterprise integration use cases. What You'll Learn Get started with WSO2 ESB Discover message processing techniques with WSO2 ESB Integrate REST and SOAP services Use enterprise messaging techniques: JMS, AMQP, MQTT Manage file-based integration and integrate with proprietary systems such as SAP Extend and administrate WSO2 ESB Who This Book Is For: All levels of IT professionals from developers to integration architects who are interested in using WSO2 ESB for their SOA infrastructure.
This book constitutes the refereed proceedings of the 20th CCF Conference on Computer Engineering and Technology, NCCET 2016, held in Xi'an, China, in August 2016. The 21 full papers presented were carefully reviewed and selected from 120 submissions. They are organized in topical sections on processor architecture; application specific processors; computer application and software optimization; technology on the horizon.
This book constitutes the refereed proceedings of the 8th International Symposium on Parallel Architecture, Algorithm and Programming, PAAP 2017, held in Haikou, China, in June 2017. The 50 revised full papers and 7 revised short papers presented were carefully reviewed and selected from 192 submissions. The papers deal with research results and development activities in all aspects of parallel architectures, algorithms and programming techniques.
Exploring new trends in computer technology, Corporal introduces an innovative and exciting concept: Transport Triggered Architecture (TTAs). Unlike most traditional architectures, where programmed operations trigger internal data transports, TTAs function through programming the data transports themselves. As a result the new architecture alleviates bottlenecks, allows for new code-generation optimizations and exploits hardware more efficiently. Founded on the author’s recent research, this book evaluates the attributes of different classes of architectures. It demonstrates how TTAs can be used as a template for automatic generation of application-specific processors and highlights their suitability for embedded system design. Several commercial TTA implementations have proven its concepts and advantages. Features includes:
Microprocessor Architectures is cutting-edge text which will prove invaluable to both industrial hardware and software engineers involved in embedded system design and to postgraduate electrical engineering and computer science students. This clearly-structured reference demonstrates the versatility of TTAs and explores their influential role in the next generation of computer architecture.
Unique selling point: * This book proposes several approaches for dynamic Android malware detection based on system calls which do not have the limitations of existing mechanisms. * This book will be useful for researchers, students, developers and security analysts to know how malware behavior represented in the form of system call graphs can effectively detect Android malware. * The malware detection mechanisms in this book can be integrated with commercial antivirus softwares to detect Android malware including obfuscated variants.
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.
This book covers the latest approaches and results from reconfigurable computing architectures employed in the finance domain. So-called field-programmable gate arrays (FPGAs) have already shown to outperform standard CPU- and GPU-based computing architectures by far, saving up to 99% of energy depending on the compute tasks. Renowned authors from financial mathematics, computer architecture and finance business introduce the readers into today's challenges in finance IT, illustrate the most advanced approaches and use cases and present currently known methodologies for integrating FPGAs in finance systems together with latest results. The complete algorithm-to-hardware flow is covered holistically, so this book serves as a hands-on guide for IT managers, researchers and quants/programmers who think about integrating FPGAs into their current IT systems.
This book describes the optimized implementations of several arithmetic datapath, controlpath and pseudorandom sequence generator circuits for realization of high performance arithmetic circuits targeted towards a specific family of the high-end Field Programmable Gate Arrays (FPGAs). It explores regular, modular, cascadable and bit-sliced architectures of these circuits, by directly instantiating the target FPGA-specific primitives in the HDL. Every proposed architecture is justified with detailed mathematical analyses. Simultaneously, constrained placement of the circuit building blocks is performed, by placing the logically related hardware primitives in close proximity to one another by supplying relevant placement constraints in the Xilinx proprietary "User Constraints File". The book covers the implementation of a GUI-based CAD tool named FlexiCore integrated with the Xilinx Integrated Software Environment (ISE) for design automation of platform-specific high-performance arithmetic circuits from user-level specifications. This tool has been used to implement the proposed circuits, as well as hardware implementations of integer arithmetic algorithms where several of the proposed circuits are used as building blocks. Implementation results demonstrate higher performance and superior operand-width scalability for the proposed circuits, with respect to implementations derived through other existing approaches. This book will prove useful to researchers, students and professionals engaged in the domain of FPGA circuit optimization and implementation.
Computer Architectures is a collection of multidisciplinary historical works unearthing sites, concepts, and concerns that catalyzed the cross-contamination of computers and architecture in the mid-20th century. Weaving together intellectual, social, cultural, and material histories, this book paints the landscape that brought computing into the imagination, production, and management of the built environment, whilst foregrounding the impact of architecture in shaping technological development. The book is organized into sections corresponding to the classic von Neumann diagram for computer architecture: program (control unit), storage (memory), input/output and computation (arithmetic/logic unit), each acting as a quasi-material category for parsing debates among architects, engineers, mathematicians, and technologists. Collectively, authors bring forth the striking homologies between a computer program and an architectural program, a wall and an interface, computer memory and storage architectures, structures of mathematics and structures of things. The collection initiates new histories of knowledge and technology production that turn an eye toward disciplinary fusions and their institutional and intellectual drives. Constructing the common ground between design and computing, this collection addresses audiences working at the nexus of design, technology, and society, including historians and practitioners of design and architecture, science and technology scholars, and media studies scholars.
The Virtual and the Real in Planning and Urban Design: Perspectives, Practices and Applicationsexplores the merging relationship between physical and virtual spaces in planning and urban design. Technological advances such as smart sensors, interactive screens, locative media and evolving computation software have impacted the ways in which people experience, explore, interact with and create these complex spaces. This book draws together a broad range of interdisciplinary researchers in areas such as architecture, urban design, spatial planning, geoinformation science, computer science and psychology to introduce the theories, models, opportunities and uncertainties involved in the interplay between virtual and physical spaces. Using a wide range of international contributors, from the UK, USA, Germany, France, Switzerland, Netherlands and Japan, it provides a framework for assessing how new technology alters our perception of physical space.
A Comprehensive Study of SQL - Practice and Implementation is designed as a textbook and provides a comprehensive approach to SQL (Structured Query Language), the standard programming language for defining, organizing, and exploring data in relational databases. It demonstrates how to leverage the two most vital tools for data query and analysis - SQL and Excel - to perform comprehensive data analysis without the need for a sophisticated and expensive data mining tool or application. Features The book provides a complete collection of modeling techniques, beginning with fundamentals and gradually progressing through increasingly complex real-world case studies It explains how to build, populate, and administer high-performance databases and develop robust SQL-based applications It also gives a solid foundation in best practices and relational theory The book offers self-contained lessons on key SQL concepts or techniques at the end of each chapter using numerous illustrations and annotated examples This book is aimed primarily at advanced undergraduates and graduates with a background in computer science and information technology. Researchers and professionals will also find this book useful.
This book serves as a starting point for people looking for a deeper principled understanding of REST, its applications, its limitations, and current research work in the area and as an architectural style. The authors focus on applying REST beyond Web applications (i.e., in enterprise environments), and in reusing established and well-understood design patterns. The book examines how RESTful systems can be designed and deployed, and what the results are in terms of benefits and challenges encountered in the process. This book is intended for information and service architects and designers who are interested in learning about REST, how it is applied, and how it is being advanced.
This textbook serves as an introduction to the subject of embedded systems design, using microcontrollers as core components. It develops concepts from the ground up, covering the development of embedded systems technology, architectural and organizational aspects of controllers and systems, processor models, and peripheral devices. Since microprocessor-based embedded systems tightly blend hardware and software components in a single application, the book also introduces the subjects of data representation formats, data operations, and programming styles. The practical component of the book is tailored around the architecture of a widely used Texas Instrument's microcontroller, the MSP430 and a companion web site offers for download an experimenter's kit and lab manual, along with Powerpoint slides and solutions for instructors.
This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.
The book presents the state-of-the-art in high performance computing and simulation on modern supercomputer architectures. It covers trends in high performance application software development in general and specifically for parallel vector architectures. The contributions cover among others the field of computational fluid dynamics, physics, chemistry, and meteorology. Innovative application fields like reactive flow simulations and nano technology are presented.
This book describes the life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection. Various trade-offs in the design process are discussed, including those associated with many of the most common memory cores, controller IPs and system-on-chip (SoC) buses. Readers will also benefit from the author's practical coverage of new verification methodologies. such as bug localization, UVM, and scan-chain. A SoC case study is presented to compare traditional verification with the new verification methodologies. Discusses the entire life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection; Introduce a deep introduction for Verilog for both implementation and verification point of view. Demonstrates how to use IP in applications such as memory controllers and SoC buses. Describes a new verification methodology called bug localization; Presents a novel scan-chain methodology for RTL debugging; Enables readers to employ UVM methodology in straightforward, practical terms.
This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor and inductive-based communication system and bandpass filtering.
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gain an insight into the inter-dependence of design parameters under practical constraints. This book serves as a valuable reference for practicing engineers working in the VLSI design area, and as text book for senior undergraduate, graduate and postgraduate students (already familiar with digital circuits and timing).
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.
This book analyzes the challenges in verifying Dynamically Reconfigurable Systems (DRS) with respect to the user design and the physical implementation of such systems. The authors describe the use of a simulation-only layer to emulate the behavior of target FPGAs and accurately model the characteristic features of reconfiguration. Readers are enabled with this simulation-only layer to maintain verification productivity by abstracting away the physical details of the FPGA fabric. Two implementations of the simulation-only layer are included: Extended Re Channel is a System C library that can be used to check DRS designs at a high level; ReSim is a library to support RTL simulation of a DRS reconfiguring both its logic and state. Through a number of case studies, the authors demonstrate how their approach integrates seamlessly with existing, mainstream DRS design flows and with well-established verification methodologies such as top-down modeling and coverage-driven verification.
This book describes how engineers can make optimum use of the two industry standard analysis/design tools, SystemC and SystemC-AMS. The authors use a system-level design approach, emphasizing how SystemC and SystemC-AMS features can be exploited most effectively to analyze/understand a given electronic system and explore the design space. The approach taken by this book enables system engineers to concentrate on only those SystemC/SystemC-AMS features that apply to their particular problem, leading to more efficient design. The presentation includes numerous, realistic and complete examples, which are graded in levels of difficulty to illustrate how a variety of systems can be analyzed with these tools.
This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in every chapter; presents detailed case studies on social media analytics for intelligent businesses and on big data analytics (BDA) in the healthcare sector; describes the network infrastructure requirements for effective transfer of big data, and the storage infrastructure requirements of applications which generate big data; examines real-time analytics solutions; introduces in-database processing and in-memory analytics techniques for data mining; discusses the use of mainframes for handling real-time big data and the latest types of data management systems for BDA; provides information on the use of cluster, grid and cloud computing systems for BDA; reviews the peer-to-peer techniques and tools and the common information visualization techniques, used in BDA.
This book explores near-threshold computing (NTC), a design-space using techniques to run digital chips (processors) near the lowest possible voltage. Readers will be enabled with specific techniques to design chips that are extremely robust; tolerating variability and resilient against errors. Variability-aware voltage and frequency allocation schemes will be presented that will provide performance guarantees, when moving toward near-threshold manycore chips. * Provides an introduction to near-threshold computing, enabling reader with a variety of tools to face the challenges of the power/utilization wall; * Demonstrates how to design efficient voltage regulation, so that each region of the chip can operate at the most efficient voltage and frequency point; * Investigates how performance guarantees can be ensured when moving towards NTC manycores through variability-aware voltage and frequency allocation schemes.
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among design decisions from multiple abstraction levels (both hardware and software) and customizing DMM according to application-specific data access and storage behaviors. |
![]() ![]() You may like...
Flight Of The Diamond Smugglers - A Tale…
Matthew Gavin Frank
Paperback
Learn Italian with Sherlock Holmes A…
Sir Arthur Conan Doyle, Weeve Languages
Paperback
R490
Discovery Miles 4 900
Learn Irish with Sherlock Holmes A Study…
Sir Arthur Conan Doyle, Weeve Languages
Paperback
R490
Discovery Miles 4 900
|