![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyzing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g., recognition of gestures, activities, facial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gen erate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis."
Human and animal vision systems have been driven by the pressures of evolution to become capable of perceiving and reacting to their environments as close to instantaneously as possible. Casting such a goal of reactive vision into the framework of existing technology necessitates an artificial system capable of operating continuously, selecting and integrating information from an environment within stringent time delays. The YAP (Vision As Process) project embarked upon the study and development of techniques with this aim in mind. Since its conception in 1989, the project has successfully moved into its second phase, YAP II, using the integrated system developed in its predecessor as a basis. During the first phase of the work the "vision as a process paradigm" was realised through the construction of flexible stereo heads and controllable stereo mounts integrated in a skeleton system (SA V A) demonstrating continuous real-time operation. It is the work of this fundamental period in the V AP story that this book aptly documents. Through its achievements, the consortium has contributed to building a strong scientific base for the future development of continuously operating machine vision systems, and has always underlined the importance of not just solving problems of purely theoretical interest but of tackling real-world scenarios. Indeed the project members should now be well poised to contribute (and take advantage of) industrial applications such as navigation and process control, and already the commercialisation of controllable heads is underway.
This volume contains revised papers based on contributions to the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The 24 papers presented here cover a broad range of topics, including the principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multi sensor fusion, and applications of multisensor fusion. The participants met in the beautiful surroundings of Mont Belledonne in Grenoble to discuss their current work in a setting conducive to interaction and the exchange of ideas. Each participant is a recognized leader in his or her area in the academic, governmental, or industrial research community. The workshop focused on techniques for the fusion or integration of sensor information to achieve the optimum interpretation of a scene. Several participants presented novel points of view on the integration of information. The 24 papers presented in this volume are based on those collected by the editor after the workshop, and reflect various aspects of our discussions. The papers are organized into five parts, as follows.
MPEG-7 is the first international standard which contains a number of key techniques from Computer Vision and Image Processing. The Curvature Scale Space technique was selected as a contour shape descriptor for MPEG-7 after substantial and comprehensive testing, which demonstrated the superior performance of the CSS-based descriptor. Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization is based on key publications on the CSS technique, as well as its multiple applications and generalizations. The goal was to ensure that the reader will have access to the most fundamental results concerning the CSS method in one volume. These results have been categorized into a number of chapters to reflect their focus as well as content. The book also includes a chapter on the development of the CSS technique within MPEG standardization, including details of the MPEG-7 testing and evaluation processes which led to the selection of the CSS shape descriptor for the standard. The book can be used as a supplementary textbook by any university or institution offering courses in computer and information science.
Overview Recent years have seen an increasing interest in the development of multi-sensory robot systems. The reason for this interest stems from a realization that there are fundamental limitations on the reconstruction of environment descriptions using only a single source of sensor information. If robot systems are ever to achieve a degree of intelligence and autonomy, they must be capable of using many different sources of sensory information in an active and dynamic manner. The observations made by the different sensors of a multi-sensor system are always uncertain, usually partial, occasionally spuri9us or incorrect and often geographically or geometrically imcomparable with other sensor views. The sensors of these systems are characterized by the diversity of information that they can provide and by the complexity of their operation. It is the goal of a multi sensor system to combine information from all these different sources into a robust and consistent description of the environment."
Ambulation Analysis in Wearable ECG Subhasis Chaudhuri, Tanmay Pawar, Siddhartha Duttagupta Ambulation Analysis in Wearable ECG demonstrates why, due to recent developments, the wearable ECG recorder substantiates a significant innovation in the healthcare field. About this book:
CHAPTER 7: MATCHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 2 Design of the matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7. 3 Model instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7. 3. 1 Discrimination by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 2 Discrimination by gross shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 3 Feature attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7. 3. 4 Surface attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 5 Classifying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 6 Relational consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 3. 7 Ordering matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7. 4. 1 Computing model-to-scene transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 2 Matching feature frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 3 Matching surface frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7. 4. 4 Verification sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7. 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CHAPTER 8: EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8. 3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8. 4 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8. 5 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8. 6 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8. 7 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8. 8 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8. 9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 CHAPTER 9: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 2 Discovering 3-D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 3 The multi-sensor approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9. 4 Limitations of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9. 5 Future directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 - viii - APPENDIX: BICUBIC SPLINE SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 2. Parametric curves and surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 3. Coons' patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 1 Linearly interpolated patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 2 Hermite interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3. 3 Curvature continuous patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From grading and preparing harvested vegetables to the tactile probing of a patient 's innermost recesses, mechatronics has become part of our way of life. This cutting-edge volume features the 30 best papers of the 13th International Conference on Mechatronics and Machine Vision in Practice. Although there is no shortage of theoretical and technical detail in these chapters, they have a common theme in that they describe work that has been applied in practice.
The latest generation of visual surveillance systems have adopted recent technological developments in acquisition and communications. These advances have not so much changed the nature of surveillance as extended its reach and reliability. Fundamentally, systems remain relatively unintelligent with human operators remaining central to the threat assessment and response planning procedures found in CCTV installations. Nonetheless, the availability of high-performance computing platforms will ensure that cycle-hungry intellectual property gestating in academic and industrial research programs will have a major impact on the next generation of products. Video-Based Surveillance Systems: Computer Vision and Distributed Processing, surveys works in progress in laboratories from around the world. The first part of the book present the most recent trends in the industrial world including real-time systems for monitoring of indoor and outdoor environments, society infrastructures such as subways and motorways, retail stores and aerial surveillance. Part Two explores current best practices in a chain of algorithms required to perform robust and accurate real-time tracking for motion detection involving rapid and frequent lighting changes, the establishment of accurate temporally consistent object trajectories particularly in crowded scenes, and the classification of object types. Part Three contains contributions which attempt to analyze events unfolding in a monitored scheme. The last part reviews distributed intelligent architectures which are likely to exploit three key recent technological developments in light-weight distributed computing methodologies, and intelligent sensors. Sucharchitectures, in which signal analysis is moving towards sensing devices, can exploit the reduced bandwidth requirements of transmitting knowledge rather than pixels. Video-Based Surveillance Systems: Computer Vision and Distributed Processing provides timely information for professionals working in the areas of surveillance, image processing, computer vision, digital signal processing and telecommunications.
This comprehensive compendium describes a parametric model and algorithmic theory to represent geometric entities with dependent uncertainties between them. The theory, named Linear Parametric Geometric Uncertainty Model (LPGUM), is an expressive and computationally efficient framework that allows to systematically study geometric uncertainty and its related algorithms in computer geometry.The self-contained monograph is of great scientific, technical, and economic importance as geometric uncertainty is ubiquitous in mechanical CAD/CAM, robotics, computer vision, wireless networks and many other fields. Geometric models, in contrast, are usually exact and do not account for these inaccuracies.This useful reference text benefits academics, researchers, and practitioners in computer science, robotics, mechanical engineering and related fields.
Human action analyses and recognition are challenging problems due to large variations in human motion and appearance, camera viewpoint and environment settings. The field of action and activity representation and recognition is relatively old, yet not well-understood by the students and research community. Some important but common motion recognition problems are even now unsolved properly by the computer vision community. However, in the last decade, a number of good approaches are proposed and evaluated subsequently by many researchers. Among those methods, some methods get significant attention from many researchers in the computer vision field due to their better robustness and performance. This book will cover gap of information and materials on comprehensive outlook - through various strategies from the scratch to the state-of-the-art on computer vision regarding action recognition approaches. This book will target the students and researchers who have knowledge on image processing at a basic level and would like to explore more on this area and do research. The step by step methodologies will encourage one to move forward for a comprehensive knowledge on computer vision for recognizing various human actions.
Despite a plethora of scientific literature devoted to vision research and the trend toward integrative research, the borders between disciplines remain a practical difficulty. To address this problem, this book provides a systematic and comprehensive overview of vision from various perspectives, ranging from neuroscience to cognition, and from computational principles to engineering developments. It is written by leading international researchers in the field, with an emphasis on linking multiple disciplines and the impact such synergy can lead to in terms of both scientific breakthroughs and technology innovations. It is aimed at active researchers and interested scientists and engineers in related fields.
Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion."
Proceedings of the Fifth International School on Neural Networks "E.R. Caianiello" on Visual Attention MechaProceedings of the Fifth International School on Neural Networks "E.R. Caianiello" on Visual Attention Mechanisms, held 23-28 October 2000 in Vietri sul Mare, Italy.nisms, held 23-28 October 2000 in Vietri sul Mare, Italy. The book covers a number of broad themes relevant to visual attention, ranging from computer vision to psychology and physiology of vision. The main theme of the book is the attention processes of vision systems and it aims to point out the analogies and the divergences of biological vision with the frameworks introduced by computer scientists in artificial vision.
Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering. This textbook provides the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods.
The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey. The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine. Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be achieved in varying illumination?"
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
This volume contains the articles presented at the 18th International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and held October 25-28, 2009 in Salt Lake City, Utah, USA. The volume presents recent results of mesh generation and adaptation which has applications to finite element simulation. It introduces theoretical and novel ideas with practical potential.
All biological systems with vision move about their environments
and successfully perform many tasks. The same capabilities are
needed in the world of robots. To that end, recent results in
empirical fields that study insects and primates, as well as in
theoretical and applied disciplines that design robots, have
uncovered a number of the principles of navigation. To offer a
unifying approach to the situation, this book brings together ideas
from zoology, psychology, neurobiology, mathematics, geometry,
computer science, and engineering. It contains theoretical
developments that will be essential in future research on the topic
-- especially new representations of space with less complexity
than Euclidean representations possess. These representations allow
biological and artificial systems to compute from images in order
to successfully deal with their environments.
Intelligent Machine Vision: Techniques, Implementations & Applications brings together the central issues involved in this exciting and topical subject.Drawing on half a century of combined experience, the authors describe state of the art and the latest developments in the field, including:- fundamentals of 'intelligent' image processing, specifically intended for Machine Vision systems;- algorithm optimization;- implementation in high-speed electronic digital hardware;- implementation in an integrated high-level software environment;- applications for industrial product quality and process control.There are hundreds of illustrations in the book, most of them created using the author's 'PIP' software - a sophisticated intelligent image processing package.A demonstration version of this software, as well as numerous examples from the book, are available at the authors' Web site: http://bruce.cs.cf.ac.uk/bruce/index.html
This book defines the emerging field of Active Perception which
calls for studying perception coupled with action. It is devoted to
technical problems related to the design and analysis of
intelligent systems possessing perception such as the existing
biological organisms and the "seeing" machines of the future. Since
the appearance of the first technical results on active vision,
researchers began to realize that perception -- and intelligence in
general -- is not transcendental and disembodied. It is becoming
clear that in the effort to build intelligent visual systems,
consideration must be given to the fact that perception is
intimately related to the physiology of the perceiver and the tasks
that it performs. This viewpoint -- known as Purposive,
Qualitative, or Animate Vision -- is the natural evolution of the
principles of Active Vision. The seven chapters in this volume
present various aspects of active perception, ranging from general
principles and methodological matters to technical issues related
to navigation, manipulation, recognition, learning, planning,
reasoning, and topics related to the neurophysiology of intelligent
systems.
The realistic generation of virtual doubles of real-world actors has been the focus of computer graphics research for many years. However, some problems still remain unsolved: it is still time-consuming to generate character animations using the traditional skeleton-based pipeline, passive performance capture of human actors wearing arbitrary everyday apparel is still challenging, and until now, there is only a limited amount of techniques for processing and modifying mesh animations, in contrast to the huge amount of skeleton-based techniques. In this thesis, we propose algorithmic solutions to each of these problems. First, two efficient mesh-based alternatives to simplify the overall character animation process are proposed. Although abandoning the concept of a kinematic skeleton, both techniques can be directly integrated in the traditional pipeline, generating animations with realistic body deformations. Thereafter, three passive performance capture methods are presented which employ a deformable model as underlying scene representation. The techniques are able to jointly reconstruct spatio-temporally coherent time-varying geometry, motion, and textural surface appearance of subjects wearing loose and everyday apparel. Moreover, the acquired high-quality reconstructions enable us to render realistic 3D Videos. At the end, two novel algorithms for processing mesh animations are described. The first one enables the fully-automatic conversion of a mesh animation into a skeletonbased animation and the second one automatically converts a mesh animation into an animation collage, a new artistic style for rendering animations. The methods described in the thesis can be regarded as solutions to specific problems or important building blocks for a larger application. As a whole, they form a powerful system to accurately capture, manipulate and realistically render realworld human performances, exceeding the capabilities of many related capture techniques. By this means, we are able to correctly capture the motion, the timevarying details and the texture information of a real human performing, and transform it into a fully-rigged character animation, that can be directly used by an animator, or use it to realistically display the actor from arbitrary viewpoints.
Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
This book provides an interdisciplinary look at emerging trends in signal processing and biomedicine found at the intersection of healthcare, engineering, and computer science. Bringing together expanded versions of selected papers presented at the 2020 IEEE Signal Processing in Medicine and Biology Symposium (IEEE SPMB), it examines the vital role signal processing plays in enabling a new generation of technology based on big data and looks at applications ranging from medical electronics to data mining of electronic medical records. Topics covered include analysis of medical images, machine learning, biomedical nanosensors, wireless technologies, and instrumentation and electrical stimulation. Biomedical Sensing and Analysis: Signal Processing in Medicine and Biology presents tutorials and examples of successful applications, and will appeal to a wide range of professionals, researchers, and students interested in applications of signal processing, medicine, and biology. Presents an interdisciplinary look at research trends in signal processing and biomedicine; Promotes collaboration between healthcare practitioners and signal processing researchers; Includes tutorials and examples of successful applications. |
You may like...
Computer-Aided Oral and Maxillofacial…
Jan Egger, Xiaojun Chen
Paperback
R4,451
Discovery Miles 44 510
Feature Extraction and Image Processing…
Mark Nixon, Alberto S. Aguado
Paperback
R1,874
Discovery Miles 18 740
Multimodal Behavior Analysis in the Wild…
Xavier Alameda-Pineda, Elisa Ricci, …
Paperback
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
|