![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
Advancements in digital sensor technology, digital image analysis techniques, as well as computer software and hardware have brought together the fields of computer vision and photogrammetry, which are now converging towards sharing, to a great extent, objectives and algorithms. The potential for mutual benefits by the close collaboration and interaction of these two disciplines is great, as photogrammetric know-how can be aided by the most recent image analysis developments in computer vision, while modern quantitative photogrammetric approaches can support computer vision activities. Devising methodologies for automating the extraction of man-made objects (e.g. buildings, roads) from digital aerial or satellite imagery is an application where this cooperation and mutual support is already reaping benefits. The valuable spatial information collected using these interdisciplinary techniques is of improved qualitative and quantitative accuracy. This book offers a comprehensive selection of high-quality and in-depth contributions from world-wide leading research institutions, treating theoretical as well as implementational issues, and representing the state-of-the-art on this subject among the photogrammetric and computer vision communities.
Gaussian scale-space is one of the best understood multi-resolution techniques available to the computer vision and image analysis community. It is the purpose of this book to guide the reader through some of its main aspects. During an intensive weekend in May 1996 a workshop on Gaussian scale-space theory was held in Copenhagen, which was attended by many of the leading experts in the field. The bulk of this book originates from this workshop. Presently there exist only two books on the subject. In contrast to Lindeberg's monograph (Lindeberg, 1994e) this book collects contributions from several scale space researchers, whereas it complements the book edited by ter Haar Romeny (Haar Romeny, 1994) on non-linear techniques by focusing on linear diffusion. This book is divided into four parts. The reader not so familiar with scale-space will find it instructive to first consider some potential applications described in Part 1. Parts II and III both address fundamental aspects of scale-space. Whereas scale is treated as an essentially arbitrary constant in the former, the latter em phasizes the deep structure, i.e. the structure that is revealed by varying scale. Finally, Part IV is devoted to non-linear extensions, notably non-linear diffusion techniques and morphological scale-spaces, and their relation to the linear case. The Danish National Science Research Council is gratefully acknowledged for providing financial support for the workshop under grant no. 9502164."
Surveillance systems have become increasingly popular. Full involvement of human operators has led to shortcomings, e.g. high labor cost, limited capability for multiple screens, inconsistency in long-duration, etc. Intelligent surveillance systems (ISSs) can supplement or even replace traditional ones. In ISSs, computer vision, pattern recognition, and artificial intelligence technologies are used to identify abnormal behaviours in videos. They present the development of real-time behaviour-based intelligent surveillance systems. The book focuses on the detection of individual abnormal behaviour based on learning and the analysis of dangerous crowd behaviour based on texture and optical flow. Practical systems include a real-time face classification and counting system, a surveillance robot system that utilizes video and audio information for intelligent interaction, and a robust person counting system for crowded environments.
Advances in sensing, signal processing, and computer technology during the past half century have stimulated numerous attempts to design general-purpose ma chines that see. These attempts have met with at best modest success and more typically outright failure. The difficulties encountered in building working com puter vision systems based on state-of-the-art techniques came as a surprise. Perhaps the most frustrating aspect of the problem is that machine vision sys tems cannot deal with numerous visual tasks that humans perform rapidly and effortlessly. In reaction to this perceived discrepancy in performance, various researchers (notably Marr, 1982) suggested that the design of machine-vision systems should be based on principles drawn from the study of biological systems. This "neuro morphic" or "anthropomorphic" approach has proven fruitful: the use of pyramid (multiresolution) image representation methods in image compression is one ex ample of a successful application based on principles primarily derived from the study of biological vision systems. It is still the case, however, that the perfor of computer vision systems falls far short of that of the natural systems mance they are intended to mimic, suggesting that it is time to look even more closely at the remaining differences between artificial and biological vision systems."
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
"3D Surface Reconstruction: Multi-Scale Hierarchical Approaches "presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. "3D Surface Reconstruction: Multi-Scale Hierarchical Approaches" is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.
Acquiring spatial data for geoinformation systems is still mainly done by human operators who analyze images using classical photogrammetric equipment or digitize maps, possibly assisted by some low level image processing. Automation of these tasks is difficult due to the complexity of the object, the topography, and the deficiency of current pattern recognition and image analysis tools for achieving a reliable transition from the data to the high level description of topographic objects. It appears that progress in automation only can be achieved by incorporating domain-specific semantic models into the analysis procedures. This volume collects papers which were presented at the Workshop "SMATI '97." The workshop focused on "Semantic Modeling for the Acquisition of Topographic Information from Images and Maps." This volume offers a comprehensive selection of high-quality and in-depth contributions by experts of the field coming from leading research institutes, treating both theoretical and implementation issues and integrating aspects of photogrammetry, cartography, computer vision, and image understanding.
Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e., the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images."
The aim of pattern theory is to create mathematical knowledge representations of complex systems, analyze the mathematical properties of the resulting regular structures, and to apply them to practically occurring patterns in nature and the man-made world. Starting from an algebraic formulation of such representations they are studied in terms of their topological, dynamical and probabilistic aspects. Patterns are expressed through their typical behavior as well as through their variability around their typical form. Employing the representations (regular structures) algorithms are derived for the understanding, recognition, and restoration of observed patterns. The algorithms are investigated through computer experiments. The book is intended for statisticians and mathematicians with an interest in image analysis and pattern theory.
COMPUTER VISION is a field of research that encompasses many objectives. A primary goal has been to construct visual sensors that can provide general-purpose robots with the same information about their surroundings as we receive from our own visual senses. This book takes an important step towards this goal by describing a working computer vision system named SCERPO. This system can recognize known three-dimensional objects in ordinary black-and-white images taken from unknown viewpoints, even when parts of the object are undetectable or hidden from view. A second major goal of computer vision re search is to provide a computational understanding of human vision. The research presented in this book has many implica tions for our understanding of human vision, particularly in the areas of perceptual organization and knowledge-based recogni tion. An attempt has been made to relate each computational result to the relevant areas in the psychology of vision. Since the material is meant to be accessible to a wide range of inter disciplinary readers, the book is written in plain language and attempts to explain most concepts from the starting position of the non-specialist. vii viii PREFACE One of the most important conclusions ansmg from this research is that visual recognition can commonly be achieved directly from the two-dimensional image without any prelim inary reconstruction of depth information or surface orienta tion from the visual input."
This is an examination of the history and the state of the art of the quest for visualizing scientific knowledge and the dynamics of its development. Through an interdisciplinary perspective this book presents profound visions, pivotal advances, and insightful contributions made by generations of researchers and professionals, which portrays a holistic view of the underlying principles and mechanisms of the development of science. This updated and extended second edition: highlights the latest advances in mapping scientific frontiers examines the foundations of strategies, principles, and design patterns provides an integrated and holistic account of major developments across disciplinary boundaries "Anyone who tries to follow the exponential growth of the literature on citation analysis and scientometrics knows how difficult it is to keep pace. Chaomei Chen has identified the significant methods and applications in visual graphics and made them clear to the uninitiated. Derek Price would have loved this book which not only pays homage to him but also to the key players in information science and a wide variety of others in the sociology and history of science." - Eugene Garfield "This is a wide ranging book on information visualization, with a specific focus on science mapping. Science mapping is still in its infancy and many intellectual challenges remain to be investigated and many of which are outlined in the final chapter. In this new edition Chaomei Chen has provided an essential text, useful both as a primer for new entrants and as a comprehensive overview of recent developments for the seasoned practitioner." - Henry Small Chaomei Chen is a Professor in the College of Information Science and Technology at Drexel University, Philadelphia, USA, and a ChangJiang Scholar at Dalian University of Technology, Dalian, China. He is the Editor-in-Chief of Information Visualization and the author of Turning Points: The Nature of Creativity (Springer, 2012) and Information Visualization: Beyond the Horizon (Springer, 2004, 2006).
This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems; provides comprehensive coverage of face detection, tracking, alignment, feature extraction, and recognition technologies, and issues in evaluation, systems, security, and applications; contains numerous step-by-step algorithms; describes a broad range of applications; presents contributions from an international selection of experts; integrates numerous supporting graphs, tables, charts, and performance data.
This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images up sampling. In addition to the design of a diverse library of splines, SW, SWP and SWF, this book describes their applications to practical problems. The applications include up sampling, image denoising, recovery from blurred images, hydro-acoustic target detection, to name a few. The SWF are utilized for image restoration that was degraded by noise, blurring and loss of significant number of pixels. The book is accompanied by Matlab based software that demonstrates and implements all the presented algorithms. The book combines extensive theoretical exposure with detailed description of algorithms, applications and software. The Matlab software can be downloaded from http://extras.springer.com
Face Image Analysis by Unsupervised Learning explores adaptive approaches to image analysis. It draws upon principles of unsupervised learning and information theory to adapt processing to the immediate task environment. In contrast to more traditional approaches to image analysis in which relevant structure is determined in advance and extracted using hand-engineered techniques, Face Image Analysis by Unsupervised Learning explores methods that have roots in biological vision and/or learn about the image structure directly from the image ensemble. Particular attention is paid to unsupervised learning techniques for encoding the statistical dependencies in the image ensemble. The first part of this volume reviews unsupervised learning, information theory, independent component analysis, and their relation to biological vision. Next, a face image representation using independent component analysis (ICA) is developed, which is an unsupervised learning technique based on optimal information transfer between neurons. The ICA representation is compared to a number of other face representations including eigenfaces and Gabor wavelets on tasks of identity recognition and expression analysis. Finally, methods for learning features that are robust to changes in viewpoint and lighting are presented. These studies provide evidence that encoding input dependencies through unsupervised learning is an effective strategy for face recognition. Face Image Analysis by Unsupervised Learning is suitable as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.
This book on autonomous road-following vehicles brings together twenty years of innovation in the field. The book uniquely details an approach to real-time machine vision for the understanding of dynamic scenes, viewed from a moving platform that begins with spatio-temporal representations of motion for hypothesized objects whose parameters are adjusted by well-known prediction error feedback and recursive estimation techniques.
In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.
This book introduces a new theory in Computer Vision yielding elementary techniques to analyze digital images. These techniques are a mathematical formalization of the Gestalt theory. From the mathematical viewpoint the closest field to it is stochastic geometry, involving basic probability and statistics, in the context of image analysis. The book is mathematically self-contained, needing only basic understanding of probability and calculus. The text includes more than 130 illustrations, and numerous examples based on specific images on which the theory is tested. Detailed exercises at the end of each chapter help the reader develop a firm understanding of the concepts imparted.
The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery. Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation. The book brings together the current state-of-the-art in the various multi-disciplinary solutions for Medical Image Processing and Computational Vision, including research, techniques, applications and new trends contributing to the development of the related areas.
Spatial trajectories have been bringing the unprecedented wealth to a variety of research communities. A spatial trajectory records the paths of a variety of moving objects, such as people who log their travel routes with GPS trajectories. The field of moving objects related research has become extremely active within the last few years, especially with all major database and data mining conferences and journals. "Computing with Spatial Trajectories" introduces the algorithms, technologies, and systems used to process, manage and understand existing spatial trajectories for different applications. This book also presents an overview on both fundamentals and the state-of-the-art research inspired by spatial trajectory data, as well as a special focus on trajectory pattern mining, spatio-temporal data mining and location-based social networks. Each chapter provides readers with a tutorial-style introduction to one important aspect of location trajectory computing, case studies and many valuable references to other relevant research work. "Computing with Spatial Trajectories" is designed as a reference or secondary text book for advanced-level students and researchers mainly focused on computer science and geography. Professionals working on spatial trajectory computing will also find this book very useful.
This is the first book to treat the analysis of 3D dynamic scenes using a stereovision system. Several approaches are described, for example two different methods for dealing with long and short sequences of images of an unknown environment including an arbitrary number of rigid mobile objects. Results obtained from stereovision systems are found to be superior to those from monocular image systems, which are often very sensitive to noise and therefore of little use in practice. It is shown thatmotion estimation can be further improved by the explicit modeling of uncertainty in geometric objects. The techniques developed in this book have been successfully demonstrated with a large number of real images in the context of visual navigation of a mobile robot.
Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and consequentially the proceedings would provide opportunity to the researchers to interact with other researchers and share their researches covering all the above areas. The proceedings of the conference thus covers the research work of different authors in the area of wireless sensor networks, wireless communications, devices, tools and techniques for WSN, and applications of wireless sensor networks. This book is beneficial for those researchers who are working in the area of wireless sensor networks, wireless communication, and developing applications of Wireless sensor networks.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing aerial and satellite image processing and related fields. Topics covered include novel tensor and wave models, a new comparative morphology scheme, warping compensation in video stabilization, image deblurring based on physical processes of blur impacts, and a rapid and robust core structural verification algorithm for feature extraction in images and videos, among others. All chapters focus on practical implementations. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, this book offers a timely guide.
Mobile robots operating in real-world, outdoor scenarios depend on dynamic scene understanding for detecting and avoiding obstacles, recognizing landmarks, acquiring models, and for detecting and tracking moving objects. Motion understanding has been an active research effort for more than a decade, searching for solutions to some of these problems; however, it still remains one of the more difficult and challenging areas of computer vision research. Qualitative Motion Understanding describes a qualitative approach to dynamic scene and motion analysis, called DRIVE (Dynamic Reasoning from Integrated Visual Evidence). The DRIVE system addresses the problems of (a) estimating the robot's egomotion, (b) reconstructing the observed 3-D scene structure; and (c) evaluating the motion of individual objects from a sequence of monocular images. The approach is based on the FOE (focus of expansion) concept, but it takes a somewhat unconventional route. The DRIVE system uses a qualitative scene model and a fuzzy focus of expansion to estimate robot motion from visual cues, to detect and track moving objects, and to construct and maintain a global dynamic reference model. |
![]() ![]() You may like...
Trends in Applications of Mathematics to…
Elisabetta Rocca, Ulisse Stefanelli, …
Hardcover
R4,132
Discovery Miles 41 320
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
Problems and Theorems in Classical Set…
Peter Komjath, Vilmos Totik
Hardcover
R2,339
Discovery Miles 23 390
Physics of Collisional Plasmas…
Michel Moisan, Jacques Pelletier
Hardcover
R1,692
Discovery Miles 16 920
Input Use Efficiency for Food and…
Rajan Bhatt, Ram Swaroop Meena, …
Hardcover
R6,811
Discovery Miles 68 110
Design Theory - Methods and Organization…
Pascal le Masson, Benoit Weil, …
Hardcover
R3,806
Discovery Miles 38 060
Geostatistics for Compositional Data…
Raimon Tolosana-Delgado, Ute Mueller
Hardcover
R3,277
Discovery Miles 32 770
|