![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
This open access book takes a fresh look at the nature of the digital travel experience, at a time when more and more people are engaged in online social interaction, games, and other virtual experiences essentially involving online visits to other places. It examines whether these experiences can seem real to the virtual traveller and, if so, under what conditions and on what grounds. The book unpacks philosophical theories relevant to the feeling of being somewhere, emphasising the importance of perception and being-in-the-world. Notions of place are outlined, based on work in tourism studies, human geography, and other applied social fields, with an aim to investigate how and when different experiences of place arise for the traveller and how these relate to telepresence - the sense of being there in another place through digital media. Findings from recent empirical studies of digital travel are presented, including a survey from which the characteristics of "digital travellers" are identified. A review of selected interactive design trends and possibilities leads to the conclusion, which draws these strands together and looks to the future of this topical and expanding field.
The proceedings of the 4th Stability and Control Processes Conference are focused on modern applied mathematics, stability theory, and control processes. The conference was held in recognition of the 90th birthday of Professor Vladimir Ivanovich Zubov (1930-2000). This selection of papers reflects the wide-ranging nature of V. I. Zubov's work, which included contributions to the development of the qualitative theory of differential equations, the theory of rigid body motion, optimal control theory, and the theory of electromagnetic fields. It helps to advance many aspects of the theory of control systems, including questions of motion stability, nonlinear oscillations in control systems, navigation and reliability of control devices, vibration theory, and quantization of orbits. The disparate applications covered by the book - in mechanical systems, game theory, solid-state physics, socio-economic systems and medical and biological systems, control automata and navigation - are developments from Professor Zubov's in-depth studies on the theory of stability of motion, the theory of automatic control and the theory of the motions of optimal processes. Stability and Control Processes presents research continuing the legacy of V. I. Zubov and updates it with sections focused on intelligence-based control. These proceedings will be of interest to academics, professionals working in industry and researchers alike.
This book reports the new results of intelligent robot with hand-eye-brain, from the interdisciplinary perspective of information science and neuroscience. It collects novel research ideas on attractive region in environment (ARIE), intrinsic variable preserving manifold learning (IVPML) and biologically inspired visual congnition, which are theoretically important but challenging to develop the intelligent robot. Furthermore, the book offers new thoughts on the possible future development of human-inspired robotics, with vivid illustrations. The book is useful for researchers, R&D engineers and graduate students working on intelligent robots.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
This book comprises select peer-reviewed proceedings of the medical challenge - C-NMC challenge: Classification of normal versus malignant cells in B-ALL white blood cancer microscopic images. The challenge was run as part of the IEEE International Symposium on Biomedical Imaging (IEEE ISBI) 2019 held at Venice, Italy in April 2019. Cell classification via image processing has recently gained interest from the point of view of building computer-assisted diagnostic tools for blood disorders such as leukaemia. In order to arrive at a conclusive decision on disease diagnosis and degree of progression, it is very important to identify malignant cells with high accuracy. Computer-assisted tools can be very helpful in automating the process of cell segmentation and identification because morphologically both cell types appear similar. This particular challenge was run on a curated data set of more than 14000 cell images of very high quality. More than 200 international teams participated in the challenge. This book covers various solutions using machine learning and deep learning approaches. The book will prove useful for academics, researchers, and professionals interested in building low-cost automated diagnostic tools for cancer diagnosis and treatment.
Fourier Vision provides a new treatment of figure-ground segmentation in scenes comprising transparent, translucent, or opaque objects. Exploiting the relative motion between figure and ground, this technique deals explicitly with the separation of additive signals and makes no assumptions about the spatial or spectral content of the images, with segmentation being carried out phasor by phasor in the Fourier domain. It works with several camera configurations, such as camera motion and short-baseline binocular stereo, and performs best on images with small velocities/displacements, typically one to ten pixels per frame. The book also addresses the use of Fourier techniques to estimate stereo disparity and optical flow. Numerous examples are provided throughout. Fourier Vision will be of value to researchers in image processing & computer vision and, especially, to those who have to deal with superimposed transparent or translucent objects. Researchers in application areas such as medical imaging and acoustic signal processing will also find this of interest.
Computer vision falls short of human vision in two respects: execution time and intelligent interpretation. This book addresses the question of execution time. It is based on a workshop on specialized processors for real-time image analysis, held as part of the activities of an ESPRIT Basic Research Action, the Working Group on Vision. The aim of the book is to examine the state of the art in vision-oriented computers. Two approaches are distinguished: multiprocessor systems and fine-grain massively parallel computers. The development of fine-grain machines has become more important over the last decade, but one of the main conclusions of the workshop is that this does not imply the replacement of multiprocessor machines. The book is divided into four parts. Part 1 introduces different architectures for vision: associative and pyramid processors as examples of fine-grain machines and a workstation with bus-oriented network topology as an example of a multiprocessor system. Parts 2 and 3 deal with the design and development of dedicated and specialized architectures. Part 4 is mainly devoted to applications, including road segmentation, mobile robot guidance and navigation, reconstruction and identification of 3D objects, and motion estimation.
Recent years have witnessed important advancements in our understanding of the psychological underpinnings of subjective properties of visual information, such as aesthetics, memorability, or induced emotions. Concurrently, computational models of objective visual properties such as semantic labelling and geometric relationships have made significant breakthroughs using the latest achievements in machine learning and large-scale data collection. There has also been limited but important work exploiting these breakthroughs to improve computational modelling of subjective visual properties. The time is ripe to explore how advances in both of these fields of study can be mutually enriching and lead to further progress. This book combines perspectives from psychology and machine learning to showcase a new, unified understanding of how images and videos influence high-level visual perception - particularly interestingness, affective values and emotions, aesthetic values, memorability, novelty, complexity, visual composition and stylistic attributes, and creativity. These human-based metrics are interesting for a very broad range of current applications, ranging from content retrieval and search, storytelling, to targeted advertising, education and learning, and content filtering. Work already exists in the literature that studies the psychological aspects of these notions or investigates potential correlations between two or more of these human concepts. Attempts at building computational models capable of predicting such notions can also be found, using state-of-the-art machine learning techniques. Nevertheless their performance proves that there is still room for improvement, as the tasks are by nature highly challenging and multifaceted, requiring thought on both the psychological implications of the human concepts, as well as their translation to machines.
Innovations in computer vision technology continue to advance the applications and design of image processing and its influence on multimedia applications. Intelligent Computer Vision and Image Processing: Innovation, Application, and Design provides methods and research on various disciplines related to the science and technology of machines. This reference source is essential for academicians, researchers, and practitioners interested in the latest developments and innovations in computer science, education, and security.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of things (IoT), and information security.
This book provides an essential overview of the broad range of functional brain imaging techniques, as well as neuroscientific methods suitable for various scientific tasks in fundamental and clinical neuroscience. It also shares information on novel methods in computational neuroscience, mathematical algorithms, image processing, and applications to neuroscience. The mammalian brain is a huge and complex network that consists of billions of neural and glial cells. Decoding how information is represented and processed by this neural network requires the ability to monitor the dynamics of large numbers of neurons at high temporal and spatial resolution over a large part of the brain. Functional brain optical imaging has seen more than thirty years of intensive development. Current light-using methods provide good sensitivity to functional changes through intrinsic contrast and are rapidly exploiting the growing availability of exogenous fluorescence probes. In addition, various types of functional brain optical imaging are now being used to reveal the brain's microanatomy and physiology.
1) Learn how to develop computer vision application algorithms 2) Learn to use software tools for analysis and development 3) Learn underlying processes need for image analysis 4) Learn concepts so that the reader can develop their own algorithms 5) Software tools provided
This book provides readers with a comprehensive and recent exposition in deep learning and its multidisciplinary applications, with a concentration on advances of deep learning architectures. The book discusses various artificial intelligence (AI) techniques based on deep learning architecture with applications in natural language processing, semantic knowledge, forecasting and many more. The authors shed light on various applications that can benefit from the use of deep learning in pattern recognition, person re-identification in surveillance videos, action recognition in videos, image and video captioning. The book also highlights how deep learning concepts can be interwoven with more modern concepts to yield applications in multidisciplinary fields. Presents a comprehensive look at deep learning and its multidisciplinary applications, concentrating on advances of deep learning architectures; Includes a survey of deep learning problems and solutions, identifying the main open issues, innovations and latest technologies; Shows industrial deep learning in practice with examples/cases, efforts, challenges, and strategic approaches.
This book provides readers with a comprehensive review of image quality assessment technology, particularly applications on screen content images, 3D-synthesized images, sonar images, enhanced images, light-field images, VR images, and super-resolution images. It covers topics containing structural variation analysis, sparse reference information, multiscale natural scene statistical analysis, task and visual perception, contour degradation measurement, spatial angular measurement, local and global assessment metrics, and more. All of the image quality assessment algorithms of this book have a high efficiency with better performance compared to other image quality assessment algorithms, and the performance of these approaches mentioned above can be demonstrated by the results of experiments on real-world images. On the basis of this, those interested in relevant fields can use the results obtained through these quality assessment algorithms for further image processing. The goal of this book is to facilitate the use of these image quality assessment algorithms by engineers and scientists from various disciplines, such as optics, electronics, math, photography techniques and computation techniques. The book can serve as a reference for graduate students who are interested in image quality assessment techniques, for front-line researchers practicing these methods, and for domain experts working in this area or conducting related application development.
"Video Tracking" provides a comprehensive treatment of the fundamental aspects of algorithm and application development for the task of estimating, over time, the position of objects of interest seen through cameras. Starting from the general problem definition and a review of existing and emerging video tracking applications, the book discusses popular methods, such as those based on correlation and gradient-descent. Using practical examples, the reader is introduced to the advantages and limitations of deterministic approaches, and is then guided toward more advanced video tracking solutions, such as those based on the Bayes' recursive framework and on Random Finite Sets. Key features: Discusses the design choices and implementation issues required to turn the underlying mathematical models into a real-world effective tracking systems. Provides block diagrams and simil-code implementation of the algorithms. Reviews methods to evaluate the performance of video trackers - this is identified as a major problem by end-users. The book aims to help researchers and practitioners develop techniques and solutions based on the potential of video tracking applications. The design methodologies discussed throughout the book provide guidelines for developers in the industry working on vision-based applications. The book may also serve as a reference for engineering and computer science graduate students involved in vision, robotics, human-computer interaction, smart environments and virtual reality programmes
This book addresses and disseminates research and development in the applications of intelligent techniques for computer vision, the field that works on enabling computers to see, identify, and process images in the same way that human vision does, and then providing appropriate output. The book provides contributions which include theory, case studies, and intelligent techniques pertaining to computer vision applications. The book helps readers grasp the essence of the recent advances in this complex field. The audience includes researchers, professionals, practitioners, and students from academia and industry who work in this interdisciplinary field. The authors aim to inspire future research both from theoretical and practical viewpoints to spur further advances in the field.
This book explains how depth measurements from the Time-of-Flight (ToF) range imaging cameras are influenced by the electronic timing-jitter. The author presents jitter extraction and measurement techniques for any type of ToF range imaging cameras. The author mainly focuses on ToF cameras that are based on the amplitude modulated continuous wave (AMCW) lidar techniques that measure the phase difference between the emitted and reflected light signals. The book discusses timing-jitter in the emitted light signal, which is sensible since the light signal of the camera is relatively straightforward to access. The specific types of jitter that present on the light source signal are investigated throughout the book. The book is structured across three main sections: a brief literature review, jitter measurement, and jitter influence in AMCW ToF range imaging.
This book provides research on the state-of-the-art methods for data management in the fourth industrial revolution, with particular focus on cloud.based data analytics for digital manufacturing infrastructures. Innovative techniques and methods for secure, flexible and profi table cloud manufacturing will be gathered to present advanced and specialized research in the selected area.
This book discusses human emotion recognition from face images using different modalities, highlighting key topics in facial expression recognition, such as the grid formation, distance signature, shape signature, texture signature, feature selection, classifier design, and the combination of signatures to improve emotion recognition. The book explains how six basic human emotions can be recognized in various face images of the same person, as well as those available from benchmark face image databases like CK+, JAFFE, MMI, and MUG. The authors present the concept of signatures for different characteristics such as distance and shape texture, and describe the use of associated stability indices as features, supplementing the feature set with statistical parameters such as range, skewedness, kurtosis, and entropy. In addition, they demonstrate that experiments with such feature choices offer impressive results, and that performance can be further improved by combining the signatures rather than using them individually. There is an increasing demand for emotion recognition in diverse fields, including psychotherapy, biomedicine, and security in government, public and private agencies. This book offers a valuable resource for researchers working in these areas.
This book presents new results on applications of geometric algebra. The time when researchers and engineers were starting to realize the potential of quaternions for - plications in electrical, mechanic, and control engineering passed a long time ago. Since the publication of Space-Time Algebra by David Hestenes (1966) and Clifford Algebra to Geometric Calculus: A Uni?ed Language for Mathematics and Physics by David Hestenes and Garret Sobczyk (1984), consistent progress in the app- cations of geometric algebra has taken place. Particularly due to the great dev- opments in computer technology and the Internet, researchers have proposed new ideas and algorithms to tackle a variety of problems in the areas of computer science and engineering using the powerful language of geometric algebra. In this process, pioneer groups started the conference series entitled "Applications of Geometric Algebra in Computer Science and Engineering" (AGACSE) in order to promote the research activity in the domain of the application of geometric algebra. The ?rst conference, AGACSE'1999, organized by Eduardo Bayro-Corrochano and Garret Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contri- tions were published in Geometric Algebra with Applications in Science and En- neering, Birkhauser, 2001. The second conference, ACACSE'2001, was held in the Engineering Department of the Cambridge University on 9-13 July 2001 and was organizedbyLeoDorst,ChrisDoran,andJoanLasenby. Thebestconferencecont- butions appeared as a book entitled Applications of Geometric Algebra in Computer Science and Engineering, Birkhauser, 2002. The third conference, AGACSE'2008, took place in August 2008 in Grimma, Leipzig, Germany.
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
Mathematical Nonlinear Image Processing deals with a fast growing research area. The development of the subject springs from two factors: (1) the great expansion of nonlinear methods applied to problems in imaging and vision, and (2) the degree to which nonlinear approaches are both using and fostering new developments in diverse areas of mathematics. Mathematical Nonlinear Image Processing will be of interest to people working in the areas of applied mathematics as well as researchers in computer vision. Mathematical Nonlinear Image Processing is an edited volume of original research. It has also been published as a special issue of the Journal of Mathematical Imaging and Vision. (Volume 2, Issue 2/3).
Machine vision systems offer great potential in a large number of areas of manufacturing industry and are used principally for Automated Visual Inspection and Robot Vision. This publication presents the state of the art in image processing. It discusses techniques which have been developed for designing machines for use in industrial inspection and robot control, putting the emphasis on software and algorithms. A comprehensive set of image processing subroutines, which together form the basic vocabulary for the versatile image processing language IIPL, is presented. This language has proved to be extremely effective, working as a design tool, in solving numerous practical inspection problems. The merging of this language with Prolog provides an even more powerful facility which retains the benefits of human and machine intelligence. The authors bring together the practical experience and the picture material from a leading industrial research laboratory and the mathematical foundations necessary to understand and apply concepts in image processing. Interactive Image Processing is a self-contained reference book that can also be used in graduate level courses in electrical engineering, computer science and physics.
Since computer vision¿s humble beginnings in the 1960s, a substantial amount of related research has been biologically inspired, using the human eye and visual perception as a model from which to work. Panoramic vision is a subset of computer vision that focuses on the creation and analysis of images with unusually wide fields of view that extend far beyond a single camera snapshot. It has broad implications for commercial and web-based multimedia applications, such as games, virtual reality, surveillance, and teleconferencing. This volume collects the works of researchers who have worked extensively in the field and covers a wide array of topics in this promising new area. In addition to providing a concise historical perspective on panoramic imaging, the book features representative sections on the design of panoramic image capturing systems, the theory involved in the imaging process, software techniques for creating panoramic images, and applications that use panoramic images. It will help readers to understand the more technical aspects of panoramic vision, such as sensor design and imaging techniques. Interest in panoramic vision will only increase over time, as faster computers and larger bandwidth become available and as specialized cameras become cheaper through economies of scale. Researchers and professionals in computer vision, imaging and robotics (machine vision) will find the book an authoritative and indispensable resource for panoramic vision concepts and methods.
This book highlights new advances in biometrics using deep learning toward deeper and wider background, deeming it "Deep Biometrics". The book aims to highlight recent developments in biometrics using semi-supervised and unsupervised methods such as Deep Neural Networks, Deep Stacked Autoencoder, Convolutional Neural Networks, Generative Adversary Networks, and so on. The contributors demonstrate the power of deep learning techniques in the emerging new areas such as privacy and security issues, cancellable biometrics, soft biometrics, smart cities, big biometric data, biometric banking, medical biometrics, healthcare biometrics, and biometric genetics, etc. The goal of this volume is to summarize the recent advances in using Deep Learning in the area of biometric security and privacy toward deeper and wider applications. Highlights the impact of deep learning over the field of biometrics in a wide area; Exploits the deeper and wider background of biometrics, such as privacy versus security, biometric big data, biometric genetics, and biometric diagnosis, etc.; Introduces new biometric applications such as biometric banking, internet of things, cloud computing, and medical biometrics. |
You may like...
Feature Extraction and Image Processing…
Mark Nixon, Alberto S. Aguado
Paperback
R1,874
Discovery Miles 18 740
Mathematical Optimization in Computer…
Luiz Velho, Paulo Carvalho, …
Hardcover
R1,589
Discovery Miles 15 890
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Gaze Interaction and Applications of Eye…
Paivi Majaranta, Hirotaka Aoki, …
Hardcover
R6,163
Discovery Miles 61 630
Computer-Aided Oral and Maxillofacial…
Jan Egger, Xiaojun Chen
Paperback
R4,451
Discovery Miles 44 510
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
R4,574
Discovery Miles 45 740
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R7,962
Discovery Miles 79 620
|