![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
As cameras become more pervasive in our daily life, vast amounts of video data are generated. The popularity of YouTube and similar websites such as Tudou and Youku provides strong evidence for the increasing role of video in society. One of the main challenges confronting us in the era of information technology is to - fectively rely on the huge and rapidly growing video data accumulating in large multimedia archives. Innovative video processing and analysis techniques will play an increasingly important role in resolving the difficult task of video search and retrieval. A wide range of video-based applications have benefited from - vances in video search and mining including multimedia information mana- ment, human-computer interaction, security and surveillance, copyright prot- tion, and personal entertainment, to name a few. This book provides an overview of emerging new approaches to video search and mining based on promising methods being developed in the computer vision and image analysis community. Video search and mining is a rapidly evolving discipline whose aim is to capture interesting patterns in video data. It has become one of the core areas in the data mining research community. In comparison to other types of data mining (e. g. text), video mining is still in its infancy. Many challenging research problems are facing video mining researchers.
This book proceedings collects a number of papers presented at the International Conference on Sensing and Imaging, which was held at Guangxi University of Science and Technology from October 15-18, 2018. Sensing and imaging is an interdisciplinary field covering a variety of sciences and techniques such as optics, electricity, magnetism, heat, sound, and computing technologies. The field has diverse applications of interest such as image processing techniques.The results in the book bridge the gap between theory and applications, translating techniques into better products. The text will appeal to students, professionals and researchers alike.
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
How does one determine how similar two maps are? This book aims at the theory of spatial similarity relations and its application in automated map generalization, including the definitions, classification and features of spatial similarity relations. Included also are calculation models of spatial similarity relations between arbitrary individual objects and between arbitrary object groups, and the application of the theory in the automation of the algorithms and procedures in map generalization.
A unified view of the use of computer vision technology for different types of vehicles Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment). The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed. Key features: * Presents the latest advances in the field of computer vision and vehicle technologies in a highly informative and understandable way, including the basic mathematics for each problem. * Provides a comprehensive summary of the state of the art computer vision techniques in vehicles from the navigation and the addressable applications points of view. * Offers a detailed description of the open challenges and business opportunities for the immediate future in the field of vision based vehicle technologies. This is essential reading for computer vision researchers, as well as engineers working in vehicle technologies, and students of computer vision.
Computer games have become a major cultural and economic force, and a subject of extensive academic interest. Up until now, however, computer games have received relatively little attention from philosophy. Seeking to remedy this, the present collection of newly written papers by philosophers and media researchers addresses a range of philosophical questions related to three issues of crucial importance for understanding the phenomenon of computer games: the nature of gameplay and player experience, the moral evaluability of player and avatar actions, and the reality status of the gaming environment. By doing so, the book aims to establish the philosophy of computer games as an important strand of computer games research, and as a separate field of philosophical inquiry. The book is required reading for anyone with an academic or professional interest in computer games, and will also be of value to readers curious about the philosophical issues raised by contemporary digital culture.
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.
Flow of ions through voltage gated channels can be represented theoretically using stochastic differential equations where the gating mechanism is represented by a Markov model. The flow through a channel can be manipulated using various drugs, and the effect of a given drug can be reflected by changing the Markov model. These lecture notes provide an accessible introduction to the mathematical methods needed to deal with these models. They emphasize the use of numerical methods and provide sufficient details for the reader to implement the models and thereby study the effect of various drugs. Examples in the text include stochastic calcium release from internal storage systems in cells, as well as stochastic models of the transmembrane potential. Well known Markov models are studied and a systematic approach to including the effect of mutations is presented. Lastly, the book shows how to derive the optimal properties of a theoretical model of a drug for a given mutation defined in terms of a Markov model.
Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems.
This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: * Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities * Molecular Imaging Enhancement * Data Analysis of Clinical & Pre-clinical Molecular Imaging * Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) * Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers from academia and industry up to date on the most recent developments in this field.
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
It has long been a dream to realize machines with flexible visual perception capability. Research on digital image processing by computers was initiated about 30 years ago, and since then a wide variety of image processing algorithms have been devised. Using such image processing algorithms and advanced hardware technologies, many practical ma chines with visual recognition capability have been implemented and are used in various fields: optical character readers and design chart readers in offices, position-sensing and inspection systems in factories, computer tomography and medical X-ray and microscope examination systems in hospitals, and so on. Although these machines are useful for specific tasks, their capabilities are limited. That is, they can analyze only simple images which are recorded under very carefully adjusted photographic conditions: objects to be recognized are isolated against a uniform background and under well-controlled artificial lighting. In the late 1970s, many image understanding systems were de veloped to study the automatic interpretation of complex natural scenes. They introduced artificial intelligence techniques to represent the knowl edge about scenes and to realize flexible control structures. The first author developed an automatic aerial photograph interpretation system based on the blackboard model (Naga1980). Although these systems could analyze fairly complex scenes, their capabilities were still limited; the types of recognizable objects were limited and various recognition vii viii Preface errors occurred due to noise and the imperfection of segmentation algorithms."
This book presents a unique guide to heritage preservation problems and the corresponding state-of-the-art digital techniques to achieve their plausible solutions. It covers various methods, ranging from data acquisition and digital imaging to computational methods for reconstructing the original (pre-damaged) appearance of heritage artefacts.The case studies presented here are mostly drawn from India's tangible and non-tangible heritage, which is very rich and multi-dimensional. The contributing authors have been working in their respective fields for years and present their methods so lucidly that they can be easily reproduced and implemented by general practitioners of heritage curation. The preservation methods, reconstruction methods, and corresponding results are all illustrated with a wealth of colour figures and images.The book consists of sixteen chapters that are divided into five broad sections, namely (i) Digital System for Heritage Preservation, (ii) Signal and Image Processing, (iii) Audio and Video Processing, (iv) Image and Video Database, and (v) Architectural Modelling and Visualization. The first section presents various state-of-the-art tools and technologies for data acquisition including an interactive graphical user interface (GUI) annotation tool and a specialized imaging system for generating the realistic visual forms of the artefacts. Numerous useful methods and algorithms for processing vocal, visual and tactile signals related to heritage preservation are presented in the second and third sections. In turn, the fourth section provides two important image and video databases, catering to members of the computer vision community with an interest in the domain of digital heritage. Finally, examples of reconstructing ruined monuments on the basis of historic documents are presented in the fifth section. In essence, this book offers a pragmatic appraisal of the uses of digital technology in the various aspects of preservation of tangible and intangible heritages.
This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and other interesting related problems.
Pattern recognition, image processing and computer vision are closely linked areas which have seen enormous progress in the last fifty years. Their applications in our daily life, commerce and industry are growing even more rapidly than theoretical advances. Hence, the need for a new handbook in pattern recognition and computer vision every five or six years as envisioned in 1990 is fully justified and valid.The book consists of three parts: (1) Pattern recognition methods and applications; (2) Computer vision and image processing; and (3) Systems, architecture and technology. This book is intended to capture the major developments in pattern recognition and computer vision though it is impossible to cover all topics.The chapters are written by experts from many countries, fully reflecting the strong international research interests in the areas. This fifth edition will complement the previous four editions of the book.
As Nixon's unpopularity increased during Watergate, his nose and jowls grew to impossible proportions in published caricatures. Yet the caricatures remained instantly recognizable. Caricatures can even be superportraits, with the paradoxical quality of being more like the face than the face itself. How can we recognize such distorted images? Do caricatures derive their power from some special property of a face recognition system or from some more general property of recognition systems? What kind of mental representations and recognition processes make caricatures so effective? What can the power of caricatures tell us about recognition? In seeking to answer these questions, the author assembles clues from a variety of sources: the invention and development of caricatures by artists, the exploitation of extreme signals in animal communication systems, and studies of how humans, other animals and connectionist recognition systems respond to caricatures. Several conclusions emerge. The power of caricatures is ubiquitous. Caricatures can be superportraits for humans, other animals and computer recognition systems. They are effective for a variety of stimuli, not just faces. They are effective whether objects are mentally represented as deviations from a norm or average member of the class, or as absolute feature values on a set of dimensions. Exaggeration of crucial norm-deviation features, distinctiveness, and resemblance to caricatured memory traces are all potential sources of the power of caricature. Superportraits will be of interest to students of cognitive psychology, perception, the visual arts and animal behavior.
This book provides a broader introduction to the theories and applications of sparse coding techniques in computer vision research. It introduces sparse coding in the context of representation learning, illustrates the fundamental concepts, and summarizes the most active research directions. A variety of applications of sparse coding are discussed, ranging from low-level image processing tasks such as super-resolution and de-blurring to high-level semantic understanding tasks such as image recognition, clustering and fusion.The book is suitable to be used as an introductory overview to this field, with its theoretical part being both easy and precious enough for quick understanding. It is also of great value to experienced researchers as it offers new perspective to the underlying mechanism of sparse coding, and points out potential future directions for different applications.
This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.
The book presents a collection of practical applications of image processing and analysis. Different vision systems are more often used among others in the automotive industry, pharmacy, military and police equipment, automated production and measurement systems. In each of these fields of technology, digital image processing and analysis module is a critical part of the process of building this type of system. The majority of books in the market deal with theoretical issues. However, this unique publication specially highlights industrial applications, especially industrial measurement applications. Along with its wide spectrum of image processing and analysis applications, this book is an interesting reference for both students and professionals.
This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts - Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning.There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter - almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.
This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts - Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning.There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter - almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.
The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.
Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and consequentially the proceedings would provide opportunity to the researchers to interact with other researchers and share their researches covering all the above areas. The proceedings of the conference thus covers the research work of different authors in the area of wireless sensor networks, wireless communications, devices, tools and techniques for WSN, and applications of wireless sensor networks. This book is beneficial for those researchers who are working in the area of wireless sensor networks, wireless communication, and developing applications of Wireless sensor networks.
This book gives a comprehensive overview of the most advanced theories, methodologies and applications in computer vision. Particularly, it gives an extensive coverage of 3D and robotic vision problems. Example chapters featured are Fourier methods for 3D surface modeling and analysis, use of constraints for calibration-free 3D Euclidean reconstruction, novel photogeometric methods for capturing static and dynamic objects, performance evaluation of robot localization methods in outdoor terrains, integrating 3D vision with force/tactile sensors, tracking via in-floor sensing, self-calibration of camera networks, etc. Some unique applications of computer vision in marine fishery, biomedical issues, driver assistance, are also highlighted. |
You may like...
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R7,962
Discovery Miles 79 620
Deep Learning Models for Medical Imaging
K. C. Santosh, Nibaran Das, …
Paperback
R2,049
Discovery Miles 20 490
Infrastructure Computer Vision
Ioannis Brilakis, Carl Thomas Michael Haas
Paperback
R3,039
Discovery Miles 30 390
Feature Extraction and Image Processing…
Mark Nixon, Alberto S. Aguado
Paperback
R1,874
Discovery Miles 18 740
Advanced Methods and Deep Learning in…
E.R. Davies, Matthew Turk
Paperback
R2,578
Discovery Miles 25 780
Computer-Aided Oral and Maxillofacial…
Jan Egger, Xiaojun Chen
Paperback
R4,451
Discovery Miles 44 510
|