Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
This book presents the proceedings of the 1st International Conference on Artificial Intelligence and Computer Visions (AICV 2020), which took place in Cairo, Egypt, from April 8 to 10, 2020. This international conference, which highlighted essential research and developments in the fields of artificial intelligence and computer visions, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into sections, covering the following topics: swarm-based optimization mining and data analysis, deep learning and applications, machine learning and applications, image processing and computer vision, intelligent systems and applications, and intelligent networks.
This book covers newly developed and novel Steganography techniques and algorithms. The book outlines techniques to provide security to a variety of applications using Steganography, with the goal of both hindering an adversary from decoding a hidden message, and also preventing an adversary from suspecting the existence of covert communications. The book looks into applying these newly designed and improved algorithms to provide a new and efficient Steganographic system, called Characteristic Region-Based Image Steganography (CR-BIS). The algorithms combine both the robustness of the Speeded-Up Robust Features technique (SURF) and Discrete Wavelet Transform (DWT) to achieve characteristic region Steganography synchronization. The book also touches on how to avoid hiding data in the whole image by dynamically selecting characteristic regions for the process of embedding. Applies and discusses innovative techniques for hiding text in a digital image file or even using it as a key to the encryption; Provides a variety of methods to achieve characteristic region Steganography synchronization; Shows how Steganography improves upon cryptography by using obscurity features.
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
This book presents practical development experiences in different areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition comprises papers on diverse aspects of bio-inspired models, soft computing and hybrid intelligent systems. The articles are divided into four main parts. The first one consists of papers that propose new fuzzy and bio-inspired models to solve general problems. The second part deals with the main theme of modular neural networks in pattern recognition, which are basically papers using bio-inspired techniques. The third part contains papers that apply hybrid intelligent systems to the problem of time series analysis and prediction, while the fourth one shows papers dealing with bio-inspired models in optimization and robotics applications. An edited book in which both theoretical and application aspects are covered.
This book features extended versions of selected papers that were presented and discussed at the 6th International Doctoral Symposium on Applied Computation and Security Systems (ACSS 2019) held in Kolkata, India on 12-13 March, 2019. Organized by the Departments of Computer Science & Engineering and A. K. Choudhury School of Information Technology, both from the University of Calcutta, the symposium's international partners were Ca' Foscari University of Venice, Italy and Bialystok University of Technology, Poland. The chapters cover topics such as biometrics, image processing, pattern recognition, algorithms, cloud computing, wireless sensor networks and security systems, reflecting the various symposium sessions.
This three-book set constitutes the refereed proceedings of the Second International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2018, held in Solapur, India, in December 2018.The 173 revised full papers presented were carefully reviewed and selected from 374 submissions. The papers are organized in topical sections in the tree volumes. Part I: computer vision and pattern recognition; machine learning and applications; and image processing. Part II: healthcare and medical imaging; biometrics and applications. Part III: document image analysis; image analysis in agriculture; and data mining, information retrieval and applications.
This three-book set constitutes the refereed proceedings of the Second International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2018, held in Solapur, India, in December 2018.The 173 revised full papers presented were carefully reviewed and selected from 374 submissions. The papers are organized in topical sections in the tree volumes. Part I: computer vision and pattern recognition; machine learning and applications; and image processing. Part II: healthcare and medical imaging; biometrics and applications. Part III: document image analysis; image analysis in agriculture; and data mining, information retrieval and applications.
Infrastructure Computer Vision delves into this field of computer science that works on enabling computers to see, identify, process images and provide appropriate output in the same way that human vision does. However, implementing these advanced information and sensing technologies is difficult for many engineers. This book provides civil engineers with the technical detail of this advanced technology and how to apply it to their individual projects.
This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area.
Feature Extraction for Image Processing and Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in MATLAB and Python. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the link between theory and exemplar code of the algorithms." Essential background theory is carefully explained. This text gives students and researchers in image processing and computer vision a complete introduction to classic and state-of-the art methods in feature extraction together with practical guidance on their implementation.
This two-volume set constitutes the proceedings of the 13th International Conference on Universal Access in Human-Computer Interaction, UAHCI 2019, held as part of the 21st International Conference, HCI International 2019, which took place in Orlando, FL, USA, in July 2019. The total of 1274 papers and 209 posters included in the 35 HCII 2019 proceedings volumes was carefully reviewed and selected from 5029 submissions. UAHCI 2019 includes a total of 95 regular papers; they were organized in topical sections named: universal access theory, methods and tools; novel approaches to accessibility; universal access to learning and education; virtual and augmented reality in universal access; cognitive and learning disabilities; multimodal interaction; and assistive environments.
This two-volume set LNCS 11569 and 11570 constitutes the refereed proceedings of the Thematic Area on Human Interface and the Management of Information, HIMI 2019, held as part of HCI International 2019 in Orlando, FL, USA. HCII 2019 received a total of 5029 submissions, of which 1275 papers and 209 posters were accepted for publication after a careful reviewing process. The 91 papers presented in the two volumes were organized in topical sections named: Visual information; Data visualization and analytics; Information, cognition and learning; Information, empathy and persuasion; Knowledge management and sharing; Haptic and tactile interaction; Information in virtual and augmented reality; Machine learning and intelligent systems; Human motion and expression recognition and tracking; Medicine, healthcare and quality of life applications.
This three-volume set constitutes the refereed proceedings of the Second International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R) 2018, held in Solapur, India, in December 2018.The 173 revised full papers presented were carefully reviewed and selected from 374 submissions. The papers are organized in topical sections in the tree volumes. Part I: computer vision and pattern recognition; machine learning and applications; and image processing. Part II: healthcare and medical imaging; biometrics and applications. Part III: document image analysis; image analysis in agriculture; and data mining, information retrieval and applications.
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention.
Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision.
This book is written for anyone who is interested in how a field of research evolves and the fundamental role of understanding uncertainties involved in different levels of analysis, ranging from macroscopic views to meso- and microscopic ones. We introduce a series of computational and visual analytic techniques, from research areas such as text mining, deep learning, information visualization and science mapping, such that readers can apply these tools to the study of a subject matter of their choice. In addition, we set the diverse set of methods in an integrative context, that draws upon insights from philosophical, sociological, and evolutionary theories of what drives the advances of science, such that the readers of the book can guide their own research with their enriched theoretical foundations. Scientific knowledge is complex. A subject matter is typically built on its own set of concepts, theories, methodologies and findings, discovered by generations of researchers and practitioners. Scientific knowledge, as known to the scientific community as a whole, experiences constant changes. Some changes are long-lasting, whereas others may be short lived. How can we keep abreast of the state of the art as science advances? How can we effectively and precisely convey the status of the current science to the general public as well as scientists across different disciplines? The study of scientific knowledge in general has been overwhelmingly focused on scientific knowledge per se. In contrast, the status of scientific knowledge at various levels of granularity has been largely overlooked. This book aims to highlight the role of uncertainties, in developing a better understanding of the status of scientific knowledge at a particular time, and how its status evolves over the course of the development of research. Furthermore, we demonstrate how the knowledge of the types of uncertainties associated with scientific claims serves as an integral and critical part of our domain expertise.
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision.
The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision.
The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision.
The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision. |
You may like...
Advances in Computer Vision and…
Hamid R Arabnia, Leonidas Deligiannidis, …
Hardcover
R9,786
Discovery Miles 97 860
Human Centric Visual Analysis with Deep…
Liang Lin, Dongyu Zhang, …
Hardcover
R3,937
Discovery Miles 39 370
Machine Vision and Augmented…
Manish Kumar Bajpai, Koushlendra Kumar Singh, …
Hardcover
R6,298
Discovery Miles 62 980
|