Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of different applications, focusing on augmented reality as a special case. Though the content is primarily VR-related, it is also relevant for many other fields.
Machine Vision Algorithms in Java provides a comprehensive introduction to the algorithms and techniques associated with machine vision systems. The Java programming language is also introduced, with particular reference to its imaging capabilities. The book contains explanations of key machine vision techniques and algorithms, along with the associated Java source code.Special features include: - A complete self-contained treatment of the topics and techniques essential to the understanding and implementation of machine vision.- An introduction to object-oriented programming and to the Java programming language, with particular reference to its imaging capabilities.- Java source code for a wide range of practical image processing and analysis functions.- Readers will be given the opportunity to download a fully functional Java-based visual programming environment for machine vision, available via the WWW. This contains over 200 image processing, manipulation and analysis functions and will enable users to implement many of the ideas covered in this book. - Details relating to the design of a Java-based visual programming environment for machine vision.- An introduction to the Java 2D imaging and Java Advanced Imaging (JAI) APIs- A wide range of illustrative examples.- Practical treatment of the subject matter. This book is aimed at senior undergraduate and postgraduate students in engineering and computer science as well as practitioners in machine vision who may wish to update or expand their knowledge of the subject. The techniques and algorithms of machine vision are expounded in a way that will be understood not only by specialists but also by those who are less familiar with the topic.
This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications. Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician's ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as contributions were written by both clinicians and researchers, which reflects the intended readership as well, being a potentially comprehensive book for all spine related clinicians, technicians, scientists, and graduate students.
Recent years have witnessed important advancements in our understanding of the psychological underpinnings of subjective properties of visual information, such as aesthetics, memorability, or induced emotions. Concurrently, computational models of objective visual properties such as semantic labelling and geometric relationships have made significant breakthroughs using the latest achievements in machine learning and large-scale data collection. There has also been limited but important work exploiting these breakthroughs to improve computational modelling of subjective visual properties. The time is ripe to explore how advances in both of these fields of study can be mutually enriching and lead to further progress. This book combines perspectives from psychology and machine learning to showcase a new, unified understanding of how images and videos influence high-level visual perception - particularly interestingness, affective values and emotions, aesthetic values, memorability, novelty, complexity, visual composition and stylistic attributes, and creativity. These human-based metrics are interesting for a very broad range of current applications, ranging from content retrieval and search, storytelling, to targeted advertising, education and learning, and content filtering. Work already exists in the literature that studies the psychological aspects of these notions or investigates potential correlations between two or more of these human concepts. Attempts at building computational models capable of predicting such notions can also be found, using state-of-the-art machine learning techniques. Nevertheless their performance proves that there is still room for improvement, as the tasks are by nature highly challenging and multifaceted, requiring thought on both the psychological implications of the human concepts, as well as their translation to machines.
This book explains how depth measurements from the Time-of-Flight (ToF) range imaging cameras are influenced by the electronic timing-jitter. The author presents jitter extraction and measurement techniques for any type of ToF range imaging cameras. The author mainly focuses on ToF cameras that are based on the amplitude modulated continuous wave (AMCW) lidar techniques that measure the phase difference between the emitted and reflected light signals. The book discusses timing-jitter in the emitted light signal, which is sensible since the light signal of the camera is relatively straightforward to access. The specific types of jitter that present on the light source signal are investigated throughout the book. The book is structured across three main sections: a brief literature review, jitter measurement, and jitter influence in AMCW ToF range imaging.
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
Signal Processing in Medicine and Biology: Innovations in Big Data Processing provides an interdisciplinary look at state-of-the-art innovations in biomedical signal processing, especially as it applies to large data sets and machine learning. Chapters are presented with detailed mathematics and complete implementation specifics so that readers can completely master these techniques. The book presents tutorials and examples of successful applications and will appeal to a wide range of professionals, researchers, and students interested in applications of signal processing, medicine, and biology at the intersection between healthcare, engineering, and computer science.
This book contains extended versions of papers presented at the international Conference VIPIMAGE 2009 - ECCOMAS Thematic Conference on Computational Vision and Medical Image, that was held at Faculdade de Engenharia da Universidade do Porto, Portugal, from 14th to 16th of October 2009. This conference was the second ECCOMAS thematic conference on computational vision and medical image processing. It covered topics related to image processing and analysis, medical imaging and computational modelling and simulation, considering their multidisciplinary nature. The book collects the state-of-the-art research, methods and new trends on the subject of computational vision and medical image processing contributing to the development of these knowledge areas.
This book mainly deals with grassland digitalization and recognition through computer vision, which will make contributions to implement of grass auto recognition and data acquisition. Taking advantage of computer vision, it focuses on intrinsic feature extraction to realize the functions such as auto recognition of forage seeds and microscope images mosaic. The book presents a new approach for identification of grass seeds, with clear figures and detailed tables. It enlightens reader by solving the traditional problems of pratacultural science through the aid of computer science.
Machine Vision technology is becoming an indispensible part of the manufacturing industry. Biomedical and scientific applications of machine vision and imaging are becoming more and more sophisticated, and new applications continue to emerge. This book gives an overview of ongoing research in machine vision and presents the key issues of scientific and practical interest. A selected board of experts from the US, Japan and Europe provides an insight into some of the latest work done on machine vision systems and appliccations.
The aim of the conference is to present and discuss new methods, issues and challenges encountered in all parts of the complex process of gradual development and application of digital surface models. This process covers data capture, data generation, storage, model creation, validation, manipulation, utilization and visualization. Each stage requires suitable methods and involves issues that may substantially decrease the value of the model. Furthermore, the conference provides a platform to discuss the requirements, features and research approaches for 3D modeling, continuous field modeling and other geoscience applications. The conference covers the following topics: - LIDAR for elevation data - Radar interferometry for elevation data - Surface model creation - Surface model statistics - Surface model storage (including data formats, standardization, database) - Feature extraction - Analysis of surface models - Surface models for hydrology, meteorology, climatology - Surface models for signal spreading - Surface models for geology (structural, mining) - Surface models for environmental science - Surface models for visibility studies - Surface models for urban geography - Surface models for human geography - Uncertainty of surface models and digital terrain analysis - Surface model visual enhancement and rendering
This book comprises select peer-reviewed proceedings of the medical challenge - C-NMC challenge: Classification of normal versus malignant cells in B-ALL white blood cancer microscopic images. The challenge was run as part of the IEEE International Symposium on Biomedical Imaging (IEEE ISBI) 2019 held at Venice, Italy in April 2019. Cell classification via image processing has recently gained interest from the point of view of building computer-assisted diagnostic tools for blood disorders such as leukaemia. In order to arrive at a conclusive decision on disease diagnosis and degree of progression, it is very important to identify malignant cells with high accuracy. Computer-assisted tools can be very helpful in automating the process of cell segmentation and identification because morphologically both cell types appear similar. This particular challenge was run on a curated data set of more than 14000 cell images of very high quality. More than 200 international teams participated in the challenge. This book covers various solutions using machine learning and deep learning approaches. The book will prove useful for academics, researchers, and professionals interested in building low-cost automated diagnostic tools for cancer diagnosis and treatment.
Motion-based recognition deals with the recognition of an object and/or its motion, based on motion in a series of images. In this approach, a sequence containing a large number of frames is used to extract motion information. The advantage is that a longer sequence leads to recognition of higher level motions, like walking or running, which consist of a complex and coordinated series of events. Unlike much previous research in motion, this approach does not require explicit reconstruction of shape from the images prior to recognition. This book provides the state-of-the-art in this rapidly developing discipline. It consists of a collection of invited chapters by leading researchers in the world covering various aspects of motion-based recognition including lipreading, gesture recognition, facial expression recognition, gait analysis, cyclic motion detection, and activity recognition. Audience: This volume will be of interest to researchers and post- graduate students whose work involves computer vision, robotics and image processing.
This book summarizes the results of our modeling-from-reality (MFR) project which took place over the last decade or so. The goal of this project is to develop techniques for modeling real objects and/or environments into geometric and photometric models through computer vision techniques. By developing such techniques, time consuming modeling process, currently un dertaken by human programmers, can be (semi-)automatically performed, and, as a result, we can drastically shorten the developing time of such virtual reality systems, reduce their developing cost, and widen their application areas. Originally, we began to develop geometric modeling techniques that acquire shape information of objects/environments for object recognition. Soon, this effort evolved into an independent modeling project, virtual-reality modeling, with the inclusion of photometric modeling aspects that acquire appearance information, such as color, texture, and smoothness. Over the course of this development, it became apparent that environmental modeling techniques were necessary when applying our techniques to mixed realities that seamlessly combine generated virtual models with other real/virtual images. The material in his book covers these aspects of development."
This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 - IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013. The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimation, and texture analysis. Different applications are addressed and described throughout the book, comprising: biomechanical studies, bio-structure modelling and simulation, bone characterization, cell tracking, computer-aided diagnosis, dental imaging, face recognition, hand gestures detection and recognition, human motion analysis, human-computer interaction, image and video understanding, image processing, image segmentation, object and scene reconstruction, object recognition and tracking, remote robot control, and surgery planning. This volume is of use to researchers, students, practitioners and manufacturers from several multidisciplinary fields, such as artificial intelligence, bioengineering, biology, biomechanics, computational mechanics, computational vision, computer graphics, computer science, computer vision, human motion, imagiology, machine learning, machine vision, mathematics, medical image, medicine, pattern recognition, and physics.
The problem of scale pervades both the natural sciences and the vi sual arts. The earliest scientific discussions concentrate on visual per ception (much like today ) and occur in Euclid's (c. 300 B. C. ) Optics and Lucretius' (c. 100-55 B. C. ) On the Nature of the Universe. A very clear account in the spirit of modern "scale-space theory" is presented by Boscovitz (in 1758), with wide ranging applications to mathemat ics, physics and geography. Early applications occur in the cartographic problem of "generalization," the central idea being that a map in order to be useful has to be a "generalized" (coarse grained) representation of the actual terrain (Miller and Voskuil 1964). Broadening the scope asks for progressive summarizing. Very much the same problem occurs in the (realistic) artistic rendering of scenes. Artistic generalization has been analyzed in surprising detail by John Ruskin (in his Modern Painters), who even describes some of the more intricate generic "scale-space sin gularities" in detail: Where the ancients considered only the merging of blobs under blurring, Ruskin discusses the case where a blob splits off another one when the resolution is decreased, a case that has given rise to confusion even in the modern literature."
This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.
This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.
This book discusses human emotion recognition from face images using different modalities, highlighting key topics in facial expression recognition, such as the grid formation, distance signature, shape signature, texture signature, feature selection, classifier design, and the combination of signatures to improve emotion recognition. The book explains how six basic human emotions can be recognized in various face images of the same person, as well as those available from benchmark face image databases like CK+, JAFFE, MMI, and MUG. The authors present the concept of signatures for different characteristics such as distance and shape texture, and describe the use of associated stability indices as features, supplementing the feature set with statistical parameters such as range, skewedness, kurtosis, and entropy. In addition, they demonstrate that experiments with such feature choices offer impressive results, and that performance can be further improved by combining the signatures rather than using them individually. There is an increasing demand for emotion recognition in diverse fields, including psychotherapy, biomedicine, and security in government, public and private agencies. This book offers a valuable resource for researchers working in these areas.
Fourier Vision provides a new treatment of figure-ground segmentation in scenes comprising transparent, translucent, or opaque objects. Exploiting the relative motion between figure and ground, this technique deals explicitly with the separation of additive signals and makes no assumptions about the spatial or spectral content of the images, with segmentation being carried out phasor by phasor in the Fourier domain. It works with several camera configurations, such as camera motion and short-baseline binocular stereo, and performs best on images with small velocities/displacements, typically one to ten pixels per frame. The book also addresses the use of Fourier techniques to estimate stereo disparity and optical flow. Numerous examples are provided throughout. Fourier Vision will be of value to researchers in image processing & computer vision and, especially, to those who have to deal with superimposed transparent or translucent objects. Researchers in application areas such as medical imaging and acoustic signal processing will also find this of interest.
This textbook is designed for postgraduate studies in the field of 3D Computer Vision. It also provides a useful reference for industrial practitioners; for example, in the areas of 3D data capture, computer-aided geometric modelling and industrial quality assurance. This second edition is a significant upgrade of existing topics with novel findings. Additionally, it has new material covering consumer-grade RGB-D cameras, 3D morphable models, deep learning on 3D datasets, as well as new applications in the 3D digitization of cultural heritage and the 3D phenotyping of crops. Overall, the book covers three main areas: 3D imaging, including passive 3D imaging, active triangulation 3D imaging, active time-of-flight 3D imaging, consumer RGB-D cameras, and 3D data representation and visualisation; 3D shape analysis, including local descriptors, registration, matching, 3D morphable models, and deep learning on 3D datasets; and 3D applications, including 3D face recognition, cultural heritage and 3D phenotyping of plants. 3D computer vision is a rapidly advancing area in computer science. There are many real-world applications that demand high-performance 3D imaging and analysis and, as a result, many new techniques and commercial products have been developed. However, many challenges remain on how to analyse the captured data in a way that is sufficiently fast, robust and accurate for the application. Such challenges include metrology, semantic segmentation, classification and recognition. Thus, 3D imaging, analysis and their applications remain a highly-active research field that will continue to attract intensive attention from the research community with the ultimate goal of fully automating the 3D data capture, analysis and inference pipeline.
Computer vision falls short of human vision in two respects: execution time and intelligent interpretation. This book addresses the question of execution time. It is based on a workshop on specialized processors for real-time image analysis, held as part of the activities of an ESPRIT Basic Research Action, the Working Group on Vision. The aim of the book is to examine the state of the art in vision-oriented computers. Two approaches are distinguished: multiprocessor systems and fine-grain massively parallel computers. The development of fine-grain machines has become more important over the last decade, but one of the main conclusions of the workshop is that this does not imply the replacement of multiprocessor machines. The book is divided into four parts. Part 1 introduces different architectures for vision: associative and pyramid processors as examples of fine-grain machines and a workstation with bus-oriented network topology as an example of a multiprocessor system. Parts 2 and 3 deal with the design and development of dedicated and specialized architectures. Part 4 is mainly devoted to applications, including road segmentation, mobile robot guidance and navigation, reconstruction and identification of 3D objects, and motion estimation.
Innovations in computer vision technology continue to advance the applications and design of image processing and its influence on multimedia applications. Intelligent Computer Vision and Image Processing: Innovation, Application, and Design provides methods and research on various disciplines related to the science and technology of machines. This reference source is essential for academicians, researchers, and practitioners interested in the latest developments and innovations in computer science, education, and security.
The book presents selected methods for accelerating image retrieval and classification in large collections of images using what are referred to as 'hand-crafted features.' It introduces readers to novel rapid image description methods based on local and global features, as well as several techniques for comparing images. Developing content-based image comparison, retrieval and classification methods that simulate human visual perception is an arduous and complex process. The book's main focus is on the application of these methods in a relational database context. The methods presented are suitable for both general-type and medical images. Offering a valuable textbook for upper-level undergraduate or graduate-level courses on computer science or engineering, as well as a guide for computer vision researchers, the book focuses on techniques that work under real-world large-dataset conditions. |
You may like...
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R8,415
Discovery Miles 84 150
|