Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of things (IoT), and information security.
Video and image analysis of the human face provides a wealth of information about the individual, including age, behavior, health and profession. With research continually being conducted into multiple applications of this field, a comprehensive and detailed volume of the new advancements of face image analysis is in demand. ""Advances in Face Image Analysis: Techniques and Technologies"" fulfills this need, reviewing and surveying new forward-thinking research and development in face image analysis technologies. With more than 30 leading experts from around the world providing comprehensive coverage of various branches of face image analysis, this book is a valuable asset for students, researchers and practitioners engaged in the study, research and development of face image analysis techniques.
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
This book provides an essential overview of the broad range of functional brain imaging techniques, as well as neuroscientific methods suitable for various scientific tasks in fundamental and clinical neuroscience. It also shares information on novel methods in computational neuroscience, mathematical algorithms, image processing, and applications to neuroscience. The mammalian brain is a huge and complex network that consists of billions of neural and glial cells. Decoding how information is represented and processed by this neural network requires the ability to monitor the dynamics of large numbers of neurons at high temporal and spatial resolution over a large part of the brain. Functional brain optical imaging has seen more than thirty years of intensive development. Current light-using methods provide good sensitivity to functional changes through intrinsic contrast and are rapidly exploiting the growing availability of exogenous fluorescence probes. In addition, various types of functional brain optical imaging are now being used to reveal the brain's microanatomy and physiology.
Sensor technologies play a large part in modern life, as they are present in things like security systems, digital cameras, smartphones, and motion sensors. While these devices are always evolving, research is being done to further develop this technology to help detect and analyze threats, perform in-depth inspections, and perform tracking services. Optoelectronics in Machine Vision-Based Theories and Applications provides innovative insights on theories and applications of optoelectronics in machine vision-based systems. It also covers topics such as applications of unmanned aerial vehicle, autonomous and mobile robots, medical scanning, industrial applications, agriculture, and structural health monitoring. This publication is a vital reference source for engineers, technology developers, academicians, researchers, and advanced-level students seeking emerging research on sensor technologies and machine vision.
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. The volume provides state-of-the-art information on 3D multi-view video, spatial audio networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading."
This book introduces the applications of deep learning in various human centric visual analysis tasks, including classical ones like face detection and alignment and some newly rising tasks like fashion clothing parsing. Starting from an overview of current research in human centric visual analysis, the book then presents a tutorial of basic concepts and techniques of deep learning. In addition, the book systematically investigates the main human centric analysis tasks of different levels, ranging from detection and segmentation to parsing and higher-level understanding. At last, it presents the state-of-the-art solutions based on deep learning for every task, as well as providing sufficient references and extensive discussions. Specifically, this book addresses four important research topics, including 1) localizing persons in images, such as face and pedestrian detection; 2) parsing persons in details, such as human pose and clothing parsing, 3) identifying and verifying persons, such as face and human identification, and 4) high-level human centric tasks, such as person attributes and human activity understanding. This book can serve as reading material and reference text for academic professors / students or industrial engineers working in the field of vision surveillance, biometrics, and human-computer interaction, where human centric visual analysis are indispensable in analysing human identity, pose, attributes, and behaviours for further understanding.
This book highlights new advances in biometrics using deep learning toward deeper and wider background, deeming it "Deep Biometrics". The book aims to highlight recent developments in biometrics using semi-supervised and unsupervised methods such as Deep Neural Networks, Deep Stacked Autoencoder, Convolutional Neural Networks, Generative Adversary Networks, and so on. The contributors demonstrate the power of deep learning techniques in the emerging new areas such as privacy and security issues, cancellable biometrics, soft biometrics, smart cities, big biometric data, biometric banking, medical biometrics, healthcare biometrics, and biometric genetics, etc. The goal of this volume is to summarize the recent advances in using Deep Learning in the area of biometric security and privacy toward deeper and wider applications. Highlights the impact of deep learning over the field of biometrics in a wide area; Exploits the deeper and wider background of biometrics, such as privacy versus security, biometric big data, biometric genetics, and biometric diagnosis, etc.; Introduces new biometric applications such as biometric banking, internet of things, cloud computing, and medical biometrics.
The advancement of security technologies has allowed information systems to store more crucial and sensitive data. With these advancements, organisations turn to physiological and behavioral methods of identification in order to guard against unwanted intrusion. Research Developments in Biometrics and Video Processing Techniques investigates advanced techniques in user identification and security, including retinal, facial, and finger print scans as well as signature and voice authentication models. Through its in-depth examination of computer vision applications and other biometric security technologies, this reference volume will provide researchers, engineers, developers, and students with insight into the latest research on enhanced security systems design and development.
Technological advances have helped to enhance disaster resilience through better risk reduction, response, mitigation, rehabilitation and reconstruction. In former times, it was local and traditional knowledge that was mainly relied upon for disaster risk reduction. Much of this local knowledge is still valid in today's world, even though possibly in different forms and contexts, and local knowledge remains a shared part of life within the communities. In contrast, with the advent of science and technology, scientists and engineers have become owners of advanced technologies, which have contributed significantly to reducing disaster risks across the globe. This book analyses emerging technologies and their effects in enhancing disaster resilience. It also evaluates the gaps, challenges, capacities required and the way forward for future disaster management. A wide variety of technologies are addressed, focusing specifically on new technologies such as cyber physical systems, geotechnology, drone, and virtual reality (VR)/ augmented reality (AR). Other sets of emerging advanced technologies including an early warning system and a decision support system are also reported on. Moreover, the book provides a variety of discussions regarding information management, communication, and community resilience at the time of a disaster. This book's coverage of different aspects of new technologies makes it a valuable resource for students, researchers, academics, policymakers, and development practitioners.
Facial recognition software has improved by leaps and bounds over the past few decades, with error rates decreasing significantly within the past ten years. Though this is true, conditions such as poor lighting, obstructions, and profile-only angles have continued to persist in preventing wholly accurate readings. Face Recognition in Adverse Conditions examines how the field of facial recognition takes these adverse conditions into account when designing more effective applications by discussing facial recognition under real world PIE variations, current applications, and the future of the field of facial recognition research. The work is intended for academics, engineers, and researchers specializing in the field of facial recognition.
This book attempts to improve algorithms by novel theories and complex data analysis in different scopes including object detection, remote sensing, data transmission, data fusion, gesture recognition, and edical image processing and analysis. The book is directed to the Ph.D. students, professors, researchers, and software developers working in the areas of digital video processing and computer vision technologies.
The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students.
This edited book explores the use of technology to enable us to visualise the life sciences in a more meaningful and engaging way. It will enable those interested in visualisation techniques to gain a better understanding of the applications that can be used in visualisation, imaging and analysis, education, engagement and training. The reader will also be able to learn about the use of visualisation techniques and technologies for the historical and forensic settings. The reader will be able to explore the utilisation of technologies from a number of fields to enable an engaging and meaningful visual representation of the biomedical sciences. The chapters presented in this volume cover such a diverse range of topics, with something for everyone. We present here chapters on technology enhanced learning in neuroanatomy; 3D printing and surgical planning; changes in higher education utilising technology, decolonising the curriculum and visual representations of the human body in education. We also showcase how not to use protective personal equipment inspired by the pandemic; anatomical and historical visualisation of obstetrics and gynaecology; 3D modelling of carpal bones and augmented reality for arachnid phobias for public engagement. In addition, we also present face modelling for surgical education in a multidisciplinary setting, military medical museum 3D digitising of historical pathology specimens and finally computational fluid dynamics.
This book provides a comprehensive review of all aspects relating to visual quality assessment for stereoscopic images, including statistical mathematics, stereo vision and deep learning. It covers the fundamentals of stereoscopic image quality assessment (SIQA), the relevant engineering problems and research significance, and also offers an overview of the significant advances in visual quality assessment for stereoscopic images, discussing and analyzing the current state-of-the-art in SIQA algorithms, the latest challenges and research directions as well as novel models and paradigms. In addition, a large number of vivid figures and formulas help readers gain a deeper understanding of the foundation and new applications of objective stereoscopic image quality assessment technologies. Reviewing the latest advances, challenges and trends in stereoscopic image quality assessment, this book is a valuable resource for researchers, engineers and graduate students working in related fields, including imaging, displaying and image processing, especially those interested in SIQA research.
The book presents the proceedings of four conferences: The 24th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'20), The 6th International Conference on Health Informatics and Medical Systems (HIMS'20), The 21st International Conference on Bioinformatics & Computational Biology (BIOCOMP'20), and The 6th International Conference on Biomedical Engineering and Sciences (BIOENG'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020, and are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks on Image Processing, Computer Vision, & Pattern Recognition, Health Informatics & Medical Systems, Bioinformatics, Computational Biology & Biomedical Engineering; Features papers from IPCV'20, HIMS'20, BIOCOMP'20, and BIOENG'20.
Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering. This textbook provides the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods.
Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
Whether an old photograph or a single video frame, there is a wealth of data hidden in a picture. Image processing and pattern analysis play a vital role in engineering science and can be applied in diverse areas to solve existing and practical problems. The Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis, and Image Processing discusses the advances of image processing and pattern analysis and addresses how new innovations will cater to the demands of daily life. This handbook provides the resources necessary for technology developers, scientists, and policymakers to adopt and implement new inventions across the globe. The chapters presented in this publication encompass various aspects of recent image processing and pattern analysis innovations including, but not limited to, mobile image tracking, motion picture analysis, pattern classification, multisensory data fusion, 3D imaging, supporting routing protocols, brain computer interfaces, image restoration, and medical imaging.
This book includes a selection of peer-reviewed papers presented at the 10th China Academic Conference on Printing and Packaging, which was held in Xi'an, China, on November 14-17, 2019. The conference was jointly organized by the China Academy of Printing Technology, Beijing Institute of Graphic Communication, and Shaanxi University of Science and Technology. With 9 keynote talks and 118 papers on graphic communication and packaging technologies, the conference attracted more than 300 scientists. The proceedings cover the latest findings in a broad range of areas, including color science and technology, image processing technology, digital media technology, mechanical and electronic engineering, Information Engineering and Artificial Intelligence Technology, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book appeals to university researchers, R&D engineers and graduate students in the graphic arts, packaging, color science, image science, material science, computer science, digital media, and network technology.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing a number of real-life applications including the identification of handwritten texts, watermarking techniques, simultaneous localization and mapping for mobile robots, motion control systems for mobile robots, analysis of indoor human activity, facial image quality assessment, android device controlling, processing medical images, clinical decision-making and foot progression angle detection. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, the book offers a timely guide for all PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
This book focuses on the generalization of map features, providing descriptions and classifying groups of map objects into six categories: point clusters, groups of contours, road networks, river networks, continuous areal features and discrete areal features. Discussing the methods and algorithms in map generalization in equal measure, it also describes the approaches for describing map features. The book is a valuable reference for graduates and researchers who are interested in cartography and geographic information science/systems, especially those in automated map generalization and spatial databases construction.
Similar to the way in which computer vision and computer graphics act as the dual fields that connect image processing in modern computer science, the field of image processing can be considered a crucial middle road between the vision and graphics fields. Research Developments in Computer Vision and Image Processing: Methodologies and Applications brings together various research methodologies and trends in emerging areas of application of computer vision and image processing. This book is useful for students, researchers, scientists, and engineers interested in the research developments of this rapidly growing field.
Augmented Reality (AR) refers to the merging of a live view of the physical, real world with context-sensitive, computer-generated images to create a mixed reality. Through this augmented vision, a user can digitally interact with and adjust information about their surrounding environment on-the-fly. "Handbook of Augmented Reality" provides an extensive overview of the current and future trends in Augmented Reality, and chronicles the dramatic growth in this field. The book includes contributions from world expert s in the field of AR from academia, research laboratories and private industry. Case studies and examples throughout the handbook help introduce the basic concepts of AR, as well as outline the Computer Vision and Multimedia techniques most commonly used today. The book is intended for a wide variety of readers including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students. This book can also be beneficial for business managers, entrepreneurs, and investors. |
You may like...
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R8,415
Discovery Miles 84 150
Concepts and Real-Time Applications of…
Smriti Srivastava, Manju Khari, …
Hardcover
R3,620
Discovery Miles 36 200
|