![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
This review presents the differential-geometric theory of homogeneous structures (mainly Poisson and symplectic structures)on loop spaces of smooth manifolds, their natural generalizations and applications in mathematical physics and field theory.
A TREATISE ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES BY IJTTHEU PFAIILKR EISENHAIIT PKOPKHHOIt OK MATUKMATKH IN 1 ltINCMTON UNIVJCIWITY GOT AND COMPANY BOSTON NEW YOKE CHICAGO LONDON PREFACE This book is a development from courses which I have given in Princeton for a number of years. During this time I have come to feel that more would be accomplished by my students if they had an introductory treatise written in English and otherwise adapted to the use of men beginning their graduate work. Chapter I is devoted to the theory of twisted curves, the method in general being that which is usually followed in discussions of this subject. But in addition I have introduced the idea of moving axes, and have derived the formulas pertaining thereto from the previously obtained Freiiet-Serret fornmlas. In this way the student is made familiar with a method which is similar to that used by Darboux in the tirst volume of his Lepons, and to that of Cesaro in his Gcomctria Ittiriiiseca. This method is not only of great advantage in the treat ment of certain topics and in the solution of problems, but it is valu able iu developing geometrical thinking. The remainder of the book may be divided into threo parts. The iirst, consisting of Chapters II-VI, deals with the geometry of a sur face in the neighborhood of a point and the developments therefrom, such as curves and systems of curves defined by differential equa tions. To a large extent the method is that of Gauss, by which the properties of a surface are derived from the discussion of two qxiad ratie differential forms. However, little or no space is given to the algebraic treatment of differential forms and their invariants. In addition, the method of moving axes, as defined in the first chapter, has been extended so as to be applicable to an investigation of the properties of surf ac. es and groups of surfaces. The extent of the theory concerning ordinary points is so great that no attempt has been made to consider the exceptional problems. Por a discussion of uch questions as the existence of integrals of differential equa tions and boundary conditions the reader must consult the treatises which deal particularly with these subjects. lu Chapters VII and VIII the theory previously developed is applied to several groups of surfaces, such as the quadrics, ruled surfaces, minimal surfaces, surfaces of constant total curvature, and surfaces with plane and spherical lines of curvature iii iv PREFACE The idea of applicability of surfaces is introduced in Chapter IIT as a particular case of conformal representation, and throughout the book attention is called to examples of applicable surfaces. However, the general problems concerned with the applicability of surfaces are discussed in Chapters IX and X, the latter of which deals entirely with the recent method of Weingarten and its developments. The remaining four chapters are devoted to a discussion of infinitesimal deformation of surfaces, congruences of straight Hues and of circles, and triply orthogonal systems of surfaces. It will be noticed that the book contains many examples, and the student will find that whereas certain of them are merely direct applications of the formulas, others constitute extensions of the theory which might properly be included as portions of a more ex tensive treatise. At first I felt constrained to give such references as would enable thereader to consult the journals and treatises from which some of these problems were taken, but finally it seemed best to furnish, no such key, only to remark that the flncyklopadie der mathematisc7ien Wissensckaften may be of assistance. And the same may be said about references to the sources of the subject-matter of the book. Many important citations have been made, but there has not been an attempt to give every reference. However, I desire to acknowledge niy indebtedness to the treatises of Uarboux, Biancln, and Scheffers...
Geometric analysis has become one of the most important tools in geometry and topology. In their books on the Ricci flow, the authors reveal the depth and breadth of this flow method for understanding the structure of manifolds. With the present book, the authors focus on the analytic aspects of Ricci flow.
This elementary account of the differential geometry of curves and surfaces in space deals with curvature and torsion, involutes and evolutes, curves on a surface, curvature of surfaces, and developable and ruled surfaces. The examples feature many special types of surfaces, and the numerous problems include complete solutions. 1965 edition.
This introductory text examines concepts, ideas, results, and techniques related to symmetry groups and Laplacians. Its exposition is based largely on examples and applications of general theory. Topics include commutative harmonic analysis, representations of compact and finite groups, Lie groups, and the Heisenberg group and semidirect products. 1992 edition.
A TREATISE ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES BY IJTTHEU PFAIILKR EISENHAIIT PKOPKHHOIt OK MATUKMATKH IN 1 ltINCMTON UNIVJCIWITY GOT AND COMPANY BOSTON NEW YOKE CHICAGO LONDON PREFACE This book is a development from courses which I have given in Princeton for a number of years. During this time I have come to feel that more would be accomplished by my students if they had an introductory treatise written in English and otherwise adapted to the use of men beginning their graduate work. Chapter I is devoted to the theory of twisted curves, the method in general being that which is usually followed in discussions of this subject. But in addition I have introduced the idea of moving axes, and have derived the formulas pertaining thereto from the previously obtained Freiiet-Serret fornmlas. In this way the student is made familiar with a method which is similar to that used by Darboux in the tirst volume of his Lepons, and to that of Cesaro in his Gcomctria Ittiriiiseca. This method is not only of great advantage in the treat ment of certain topics and in the solution of problems, but it is valu able iu developing geometrical thinking. The remainder of the book may be divided into threo parts. The iirst, consisting of Chapters II-VI, deals with the geometry of a sur face in the neighborhood of a point and the developments therefrom, such as curves and systems of curves defined by differential equa tions. To a large extent the method is that of Gauss, by which the properties of a surface are derived from the discussion of two qxiad ratie differential forms. However, little or no space is given to the algebraic treatment of differential forms and their invariants. In addition, the method of moving axes, as defined in the first chapter, has been extended so as to be applicable to an investigation of the properties of surf ac. es and groups of surfaces. The extent of the theory concerning ordinary points is so great that no attempt has been made to consider the exceptional problems. Por a discussion of uch questions as the existence of integrals of differential equa tions and boundary conditions the reader must consult the treatises which deal particularly with these subjects. lu Chapters VII and VIII the theory previously developed is applied to several groups of surfaces, such as the quadrics, ruled surfaces, minimal surfaces, surfaces of constant total curvature, and surfaces with plane and spherical lines of curvature iii iv PREFACE The idea of applicability of surfaces is introduced in Chapter IIT as a particular case of conformal representation, and throughout the book attention is called to examples of applicable surfaces. However, the general problems concerned with the applicability of surfaces are discussed in Chapters IX and X, the latter of which deals entirely with the recent method of Weingarten and its developments. The remaining four chapters are devoted to a discussion of infinitesimal deformation of surfaces, congruences of straight Hues and of circles, and triply orthogonal systems of surfaces. It will be noticed that the book contains many examples, and the student will find that whereas certain of them are merely direct applications of the formulas, others constitute extensions of the theory which might properly be included as portions of a more ex tensive treatise. At first I felt constrained to give such references as would enable thereader to consult the journals and treatises from which some of these problems were taken, but finally it seemed best to furnish, no such key, only to remark that the flncyklopadie der mathematisc7ien Wissensckaften may be of assistance. And the same may be said about references to the sources of the subject-matter of the book. Many important citations have been made, but there has not been an attempt to give every reference. However, I desire to acknowledge niy indebtedness to the treatises of Uarboux, Biancln, and Scheffers...
How useful it is, noted the Bulletin of the American Mathematical Society, "to have a single, short, well-written book on differential topology." This accessible volume introduces advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds, from elements of theory to method of surgery. 1993 edition.
Of value to mathematicians, physicists, and engineers, this excellent introduction to Radon transform covers both theory and applications, with a rich array of examples and literature that forms a valuable reference. This 1993 edition is a revised and updated version by the author of his pioneering work.
This book gives a presentation of topics in Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject. The authors have aimed at presenting technical material in a clear and detailed manner. In this volume, geometric aspects of the theory have been emphasized. The book presents the theory of Ricci solitons, Kahler-Ricci flow, compactness theorems, Perelman's entropy monotonicity and no local collapsing, Perelman's reduced distance function and applications to ancient solutions, and a primer of 3-manifold topology. Various technical aspects of Ricci flow have been explained in a clear and detailed manner. The authors have tried to make some advanced material accessible to graduate students and nonexperts. The book gives a rigorous introduction to Perelman's work and explains technical aspects of Ricci flow useful for singularity analysis. Throughout, there are appropriate references so that the reader may further pursue the statements and proofs of the variou
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections.The second half of the text provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book can serve as a suitable text for a topics course for advanced undergraduates and graduate students.
The systole of a compact metric space $X$ is a metric invariant of $X$, defined as the least length of a noncontractible loop in $X$. When $X$ is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by W. Tutte. The first nontrivial results for systoles of surfaces are the two classical inequalities of C. Loewner and P. Pu, relying on integral-geometric identities, in the case of the two-dimensional torus and real projective plane, respectively. Currently, systolic geometry is a rapidly developing field, which studies systolic invariants in their relation to other geometric invariants of a manifold. This book presents the systolic geometry of manifolds and polyhedra, starting with the two classical inequalities, and then proceeding to recent results, including a proof of M. Gromov's filling area conjecture in a hyperelliptic setting. It then presents Gromov's inequalities and their generalisations, as well as asymptotic phenomena for systoles of surfaces of large genus, revealing a link both to ergodic theory and to properties of congruence subgroups of arithmetic groups. The author includes results on the systolic manifestations of Massey products, as well as of the classical Lusternik-Schnirelmann category.
Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research
experience to provide a smooth transition from conventional
calculus to exterior calculus and differential geometry, assuming
only a knowledge of conventional calculus. Introduction to
Differential Geometry with applications to Navier-Stokes Dynamics
includes the topics:
The papers in this volume reflect a broad spectrum of current research activities on the theory and applications of nonlinear dynamics and evolution equations. They are based on lectures given during the International Conference on Nonlinear Dynamics and Evolution Equations at Memorial University of Newfoundland, St. John's, NL, Canada, July 6-10, 2004. This volume contains thirteen invited and refereed papers. Nine of these are survey papers, introducing the reader to, and describing the current state of the art in major areas of dynamical systems, ordinary, functional and partial differential equations, and applications of such equations in the mathematical modelling of various biological and physical phenomena. These papers are complemented by four research papers that examine particular problems in the theory and applications of dynamical systems.
An examination of approaches to easy-to-understand but
difficult-to-solve mathematical problems, this classic text begins
with a discussion of Dirichlet's principle and the boundary value
problem of potential theory, then proceeds to examinations of
conformal mapping on parallel-slit domains and Plateau's problem.
Also explores minimal surfaces with free boundaries and unstable
minimal surfaces. 1950 edition.
Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 2: Model Operators and Systems, Mathematical Surveys and Monographs, Vol. 93, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions; B. Spectral theory of Hankel and Toeplitz operators; C. Function models for linear operators and free interpolations; and D. Infinite-dimensional system theory and signal processing. This volume contains Parts A and B. Hardy classes of holomorphic functions is known to be the most powerful tool in complex analysis for a variety of applications, starting with Fourier series, through the Riemann $\zeta$-function, all the way to Wiener's theory of signal processing. Spectral theory of Hankel and Toeplitz operators becomes the supporting pillar for a large part of harmonic and complex analysis and for many of their applications. In this book, moment problems, Nevanlinna-Pick and Caratheodory interpolation, and the best rational approximations are considered to illustrate the power of Hankel and Toeplitz operators. The book is geared toward a wide audience of readers, from graduate students to professional mathematicians, interested in operator theory and functions of a complex variable. The two volumes develop an elementary approach while retaining an expert level that can be applied in advanced analysis and selected applications. Table of Contents: An invitation to Hardy classes/Contents: Foreword to Part A; Invariant subspaces of $L^2(\mu)$; First applications; $H^p$ classes. Canonical factorization; Szego infimum, and generalized Phragmen-Lindelof principle; Harmonic analysis in $L^2(\mathbb{T},\mu)$; Transfer to the half-plane; Time-invariant filtering; Distance formulae and zeros of the Riemann $\zeta$-function. Hankel and Toeplitz operators/Contents: Foreword to Part B; Hankel operators and their symbols; Compact Hankel operators; Applications to Nevanlinna-Pick interpolation; Essential spectrum. The first step: Elements of Toeplitz operators; Essential spectrum. The second step: The Hilbert matrix and other Hankel operators; Hankel and Toeplitz operators associated with moment problems; Singular numbers of Hankel operators; Trace class Hankel operators; Inverse spectral problems, stochastic processes and one-sided invertibility; Bibliography; Author index; Subject index; Symbol index. This is a reprint of the 2002 original. (SURV/92.S)
Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https://openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.
The authors' purpose in writing this title is to put material which they found stimulating and interesting as graduate students into form. It is intended for individual study and for use as a text for graduate level courses such as the one from which this material stems, given by Professor W. Ambrose at MIT in 1958-1959. Previously the material had been organized in roughly the same form by him and Professor I.M. Singer, and they in turn drew upon the work of Ehresmann, Chern, and E. Cartan. The authors' contributions have been primarily to fill out the material with details, asides and problems, and to alter notation slightly. They believe that this subject matter, besides being an interesting area for specialization, lends itself especially to a synthesis of several branches of mathematics, and thus should be studied by a wide spectrum of graduate students so as to break away from narrow specialization and see how their own fields are related and applied in other fields. Part of this subject should be of interest not only to those working in geometry, but also to those in analysis, topology, algebra, and even probability.
In this volume the author presents, in great detail and with many examples, a basic collection of principles, techniques, and applications needed to conduct independent research in gauge theory and its use in geometry and topology. Complete and self-contained computations of the Seiberg-Witten invariants of most simply connected algebraic surfaces using only Witten's factorization method are included. Also given is a new approach to cutting and pasting Seiberg-Witten invariants, which is illustrated by examples such as the connected sum theorem, the blow-up formula, and a proof of a vanishing result of Fintushel and Stern. The book is a suitable textbook for advanced graduate courses in differential geometry, algebraic topology, basic PDEs and functional analysis.
For a Riemannian manifold $M$, the geometry, topology and analysis are interrelated in ways that are widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin (or $\textrm {spin}^\mathbb{C}$) structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants.In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm {spin}^\mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature.Considerations of Killing spinors and solutions of the twistor equation on $M$ lead to results about whether $M$ is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.
The Teichmuller space $T(X)$ is the space of marked conformal structures on a given quasi conformal surface $X$. This volume uses quasi conformal mapping to give a unified and up-to-date treatment of $T(X)$. Emphasis is placed on parts of the theory applicable to non compact surfaces and to surfaces possibly of infinite analytic type. The book provides a treatment of deformations of complex structures on infinite Riemann surfaces and gives background for further research in many areas. These include applications to fractal geometry, to three-dimensional manifolds through its relationship to Kleinian groups, and to one-dimensional dynamics through its relationship to quasi symmetric mappings. Many research problems in the application of function theory to geometry and dynamics are suggested.
This edition of the invaluable text Modern Differential Geometry for Physicists contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made.These lecture notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course "Quantum Fields and Fundamental Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory.The volume is divided into four parts: (i) introduction to general topology; (ii) introductory coordinate-free differential geometry; (iii) geometrical aspects of the theory of Lie groups and Lie group actions on manifolds; (iv) introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic. This is done with awareness of the difficulty which physics graduate students often experience when being exposed for the first time to the rather abstract ideas of differential geometry.
Each of the models in this book is both beautiful and interesting and plays its part as a hands-on introduction to the study of geodesic domes. It was the American architect Buckminster Fuller who pioneered this type of building and who also helped to establish a sound basis for designing them. With the aid of its models, this book explains the underlying theory and shows how a sphere can be divided and subdivided symmetrically to create dramtic buildings which are light and strong and have no need of internal support.
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Frechet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups.Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. It emphasizes the geometric aspects of the theory and treats topics such as braids, homeomorphisms of surfaces, surgery of 3-manifolds (Kirby calculus), and branched coverings. This attractive geometric material, interesting in itself yet not previously gathered in book form, constitutes the basis of the last two chapters, where the Jones-Witten invariants are constructed via the rigorous skein algebra approach (mainly due to the Saint Petersburg school). Unlike several recent monographs, where all of these invariants are introduced by using the sophisticated abstract algebra of quantum groups and representation theory, the mathematical prerequisites are minimal in this book. Numerous figures and problems make it suitable as a course text and for self-study. |
![]() ![]() You may like...
Reconceptualizing the Digital Humanities…
Kaby Wing-sze Kung
Hardcover
R4,235
Discovery Miles 42 350
Fuzzy and Neural: Interactions and…
James J Buckley, Thomas Feuring
Hardcover
R2,973
Discovery Miles 29 730
Fundamentals of Materials Science - The…
Eric J. Mittemeijer
Hardcover
R3,270
Discovery Miles 32 700
|