![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Noncommutative geometry combines themes from algebra, analysis and geometry and has significant applications to physics. This book focuses on cyclic theory, and is based upon the lecture courses by Daniel G. Quillen at the University of Oxford from 1988-92, which developed his own approach to the subject. The basic definitions, examples and exercises provided here allow non-specialists and students with a background in elementary functional analysis, commutative algebra and differential geometry to get to grips with the subject. Quillen's development of cyclic theory emphasizes analogies between commutative and noncommutative theories, in which he reinterpreted classical results of Hamiltonian mechanics, operator algebras and differential graded algebras into a new formalism. In this book, cyclic theory is developed from motivating examples and background towards general results. Themes covered are relevant to current research, including homomorphisms modulo powers of ideals, traces on noncommutative differential forms, quasi-free algebras and Chern characters on connections.
Black holes present one of the most fascinating predictions of Einstein's general theory of relativity. There is strong evidence of their existence through observation of active galactic nuclei, including the centre of our galaxy, observations of gravitational waves, and others. There exists a large scientific literature on black holes, including many excellent textbooks at various levels. However, most of these steer clear from the mathematical niceties needed to make the theory of black holes a mathematical theory. Those which maintain a high mathematical standard are either focused on specific topics, or skip many details. The objective of this book is to fill this gap and present a detailed, mathematically oriented, extended introduction to the subject. The book provides a wide background to the current research on all mathematical aspects of the geometry of black hole spacetimes.
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut's Theorem is presented as a conservation law for angular momentum. Green's Theorem makes possible a drafting tool called a planimeter. Foucault's Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn't work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature. Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schroedinger operators, operators on graphs, and the spectral theory of Riemannian manifolds. Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.
This book provides a comprehensive introduction to Submanifold theory, focusing on general properties of isometric and conformal immersions of Riemannian manifolds into space forms. One main theme is the isometric and conformal deformation problem for submanifolds of arbitrary dimension and codimension. Several relevant classes of submanifolds are also discussed, including constant curvature submanifolds, submanifolds of nonpositive extrinsic curvature, conformally flat submanifolds and real Kaehler submanifolds. This is the first textbook to treat a substantial proportion of the material presented here. The first chapters are suitable for an introductory course on Submanifold theory for students with a basic background on Riemannian geometry. The remaining chapters could be used in a more advanced course by students aiming at initiating research on the subject, and are also intended to serve as a reference for specialists in the field.
This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, this book provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories.
I tell about different mathematical tool that is important in general relativity. The text of the book includes definition of geometric object, concept of reference frame, geometry of metric\hyph affinne manifold. Using this concept I learn dynamics in general relativity. We call a manifold with torsion and nonmetricity the metric\hyph affine manifold. The nonmetricity leads to a difference between the auto parallel line and the extreme line, and to a change in the expression of the Frenet transport. The torsion leads to a change in the Killing equation. We also need to add a similar equation for the connection. The dynamics of a particle follows to the Frenet transport. The analysis of the Frenet transport leads to the concept of the Cartan connection which is compatible with the metric tensor. We need additional physical constraints to make a nonmetricity observable.
In this book, I explored differential equations for operation in Lie group and for representations of group Lie in a vector space.
As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is now the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics. The book considers only domains in Cn and assumes a basic knowledge of several complex variables. It is a valuable reference work for the expert but is also accessible to readers who are knowledgeable about several complex variables. Each chapter starts with a brief summary of its contents and continues with a short introduction. It ends with an "Exercises" and a "List of problems" section that gathers all the problems from the chapter. The authors have been highly successful in giving a rigorous but readable account of the main lines of development in this area.
Dieses Buch ist eine Einfuhrung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunachst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flachen, bevor dann hoherdimensionale Flachen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flachen." Dieses fuhrt den Leser bis hin zu dem beruhmten Satz von Gauss-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Halfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel uber "Einstein-Raume," die eine grosse Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitatstheorie von A. Einstein haben. Es wird grosser Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstutzt wird. Bei der Neuauflage wurden einige zusatzliche Losungen zu denUbungsaufgaben erganzt." |
You may like...
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Harmonic Morphisms Between Riemannian…
Paul Baird, John C. Wood
Hardcover
R5,496
Discovery Miles 54 960
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,124
Discovery Miles 11 240
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon
Hardcover
R3,614
Discovery Miles 36 140
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Finsler and Lagrange Geometries…
Mihai Anastasiei, P.L. Antonelli
Hardcover
R2,833
Discovery Miles 28 330
|