![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making "An Introduction to Riemannian Geometry" ideal for self-study.
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the Poincare-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his "Clifford algebra analogue" of the Hopf-Koszul-Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. "
A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications.
Parabolic equations in this framework have been largely ignored and are the primary focus of this work.; This book will appeal to mathematicians and physicists in PDEs who are interested in boundary and initial value problems, and may be used as a supplementary text by graduate students.
This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn. Originally published in 1976. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Harmonic maps between Riemannian manifolds were first established by James Eells and Joseph H. Sampson in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced by Guoying Jiang in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied by the author in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated by Toshiyuki Ichiyama, Jun-Ichi Inoguchi and Hajime Urakawa in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.
This volume contains the Proceedings of the conference "Complex and Differential Geometry 2009", held at Leibniz Universitat Hannover, September 14 - 18, 2009. It was the aim of this conference to bring specialists from differential geometry and (complex) algebraic geometry together and to discuss new developments in and the interaction between these fields. Correspondingly, the articles in this book cover a wide area of topics, ranging from topics in (classical) algebraic geometry through complex geometry, including (holomorphic) symplectic and poisson geometry, to differential geometry (with an emphasis on curvature flows) and topology.
The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss, and Riemann is a story that is often broken into parts axiomatic geometry, non-Euclidean geometry, and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big picture to which these parts belong? In this introduction to differential geometry, the parts are united with all of their interrelations, motivated by the history of the parallel postulate. Beginning with the ancient sources, the author first explores synthetic methods in Euclidean and non-Euclidean geometry and then introduces differential geometry in its classical formulation, leading to the modern formulation on manifolds such as space-time. The presentation is enlivened by historical diversions such as Hugyens's clock and the mathematics of cartography. The intertwined approaches will help undergraduates understand the role of elementary ideas in the more general, differential setting. This thoroughly revised second edition includes numerous new exercises and a new solution key. New topics include Clairaut's relation for geodesics, Euclid's geometry of space, further properties of cycloids and map projections, and the use of transformations such as the reflections of the Beltrami disk.
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Astronomy as well as molecular physics describe non-relativistic motion by an interaction of the same form: By Newton's respectively by Coulomb's potential. But whereas the fundamental laws of motion thus have a simple form, the n-body problem withstood (for n > 2) all attempts of an explicit solution. Indeed, the studies of Poincare at the end of the last century lead to the conclusion that such an explicit solution should be impossible. Poincare himselfopened a new epoch for rational mechanics by asking qual itative questions like the one about the stability of the solar system. To a largeextent, his work, which was critical for the formation of differential geometry and topology, was motivated by problems arising in the analysis of the n-body problem ([38], p. 183). As it turned out, even by confining oneselfto questions ofqualitativenature, the general n-body problem could not be solved. Rather, simplified models were treated, like planar motion or the restricted 3-body problem, where the motion of a test particle did not influence the other two bodies.
The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.
Visualization and mathematics have begun a fruitful relationship,
establishing links between problems and solutions of both fields.
In some areas of mathematics, like differential geometry and
numerical mathematics, visualization techniques are applied with
great success. However, visualization methods are relying heavily
on mathematical concepts.
This text provides a comprehensive introduction to Berezin-Toeplitz operators on compact Kahler manifolds. The heart of the book is devoted to a proof of the main properties of these operators which have been playing a significant role in various areas of mathematics such as complex geometry, topological quantum field theory, integrable systems, and the study of links between symplectic topology and quantum mechanics. The book is carefully designed to supply graduate students with a unique accessibility to the subject. The first part contains a review of relevant material from complex geometry. Examples are presented with explicit detail and computation; prerequisites have been kept to a minimum. Readers are encouraged to enhance their understanding of the material by working through the many straightforward exercises.
This self-contained treatment of Morse theory focuses on
applications and is intended for a graduate course on differential
or algebraic topology, and will also be of interest to
researchers.This is the first textbook to include topics such as
Morse-Smale flows, Floer homology, min-max theory, moment maps and
equivariant cohomology, and complex Morse theory.The reader is
expected to have some familiarity with cohomology theory and
differential and integral calculus on smooth manifolds.
The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kahler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of "Topics in Extrinsic Geometry of Codimension-One" "Foliations" achieve a technical tour de force, which will lead to important geometric results. The "Integral Formulae," introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is "Extrinsic Geometric Flow "(EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs "Variational Formulae," revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called "Extrinsic Geometric Solutions") of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds. "
Lectures: C.B. Allend rfer: Global differential geometry of imbedded manifolds.- Seminars: P. Libermann: Pseudo-groupes infit simaux.
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This 2006 textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
This 1989 monograph deals with parametric minimal surfaces in Euclidean space. The author presents a broad survey which extends from the classical beginnings to the current situation whilst highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks. The presentation is complete and is complemented by a bibliography of nearly 1600 references. The careful expository style and emphasis on geometric aspects are extremely valuable. Moreover, in the years leading up to the publication of this book, the theory of minimal surfaces was finding increasing application to other areas of mathematics and the physical sciences ensuring that this account will appeal to non-specialists as well.
First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.
This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.
Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications. |
You may like...
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Projective Differential Geometry of…
M. A. Akivis, V. V Gol'dberg
Hardcover
R1,947
Discovery Miles 19 470
Hermitian-Grassmannian Submanifolds…
Young Jin Suh, Yoshihiro Ohnita, …
Hardcover
R4,769
Discovery Miles 47 690
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, …
Hardcover
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
|