![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topological methods and also for geometers who are faced with problems requiring topological approaches and thus need a simple and concrete introduction to rational homotopy. This is essentially a book of applications. Geodesics, curvature, embeddings of manifolds, blow-ups, complex and Kahler manifolds, symplectic geometry, torus actions, configurations and arrangements are all covered. The chapters related to these subjects act as an introduction to the topic, a survey, and a guide to the literature. But no matter what the particular subject is, the central theme of the book persists; namely, there is a beautiful connection between geometry and rational homotopy which both serves to solve geometric problems and spur the development of topological methods.
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical worldâwave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many moreâare described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.
Discrete differential geometry is an active mathematical terrain where differential geometry and discrete geometry meet and interact. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces. Current progress in this field is to a large extent stimulated by its relevance for computer graphics and mathematical physics. This collection of essays, which documents the main lectures of the 2004 Oberwolfach Seminar on the topic, as well as a number of additional contributions by key participants, gives a lively, multi-facetted introduction to this emerging field.
This book constitutes the refereed proceedings of the 12th IMA International Conference on the Mathematics of Surfaces, held in Sheffield, UK in September 2007. The papers cover a range of ideas from underlying theoretical tools to industrial uses of surfaces. Research is reported on theoretical aspects of surfaces as well as more practical topics.
This graduate level text covers an exciting and active area of research at the crossroads of several different fields in Mathematics and Physics. In Mathematics it involves Differential Geometry, Complex Algebraic Geometry, Symplectic Geometry, and in Physics String Theory and Mirror Symmetry. Drawing extensively on the author's previous work, the text explains the advanced mathematics involved simply and clearly to both mathematicians and physicists. Starting with the basic geometry of connections, curvature, complex and Kahler structures suitable for beginning graduate students, the text covers seminal results such as Yau's proof of the Calabi Conjecture, and takes the reader all the way to the frontiers of current research in calibrated geometry, giving many open problems.
The papers collected in this volume are contributions to the 43rd session of the Seminaire de mathematiques superieures (SMS) on "Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology." This session took place at the Universite de Montreal in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger, our administrative assistant, for her help with the organi- tion and Mr. Andre Montpetit, our technical editor, for his help in the preparation of the volume."
This volume collects the papers accepted for presentation at the 11th IMA Conference on the Mathematics of Surfaces, held at Loughborough University, 5th-7th September 2005. As with all earlier conferences in the series, contri- tors to this volume comefrom manycountries. The paperspresented herere?ect the interest in a subject of relevance to mathematics, engineering, and computer science, especially in domains such as computer-aided design, computer vision, and computer graphics. The papers in the present volume include eight invited papers, as well as a larger number of submitted papers. They cover a range of ideas from - derlying theoretical tools to industrial and medical uses of surfaces. The latter category includes such diverse topics as surfaces in car design, and modelling of teeth, while the former includes papers on Voronoi diagrams, linear systems, estimation of curvatures on meshes, operators on meshes, intersection of sub- vision surfaces, approximate parameterization, condition numbers, Pythagorean hodographs, artifactsinB-splinesurfaces, B eziersurfacesofminimalenergy, line subdivision, subdivision surfaces, level sets and symmetry, the topology of - gebraic surfaces, curve analysis, interpolation with positivity, and conversion of cyclides to NURBS. Other papers concentrate on particular algorithms arising from applications, such as embedding graphs in manifolds, recoveryof 3D shape from shading, ?nding optimal feedrates for machining, detection of creases in range data, and ?lling holes in range data. We would like to thank all those who attended the conference and helped to make it a succes
Hamilton's Ricci flow has attracted considerable attention since its introduction in 1982, owing partly to its promise in addressing the Poincare conjecture and Thurston's geometrization conjecture. This book gives a concise introduction to the subject with the hindsight of Perelman's breakthroughs from 2002/2003. After describing the basic properties of, and intuition behind the Ricci flow, core elements of the theory are discussed such as consequences of various forms of maximum principle, issues related to existence theory, and basic properties of singularities in the flow. A detailed exposition of Perelman's entropy functionals is combined with a description of Cheeger-Gromov-Hamilton compactness of manifolds and flows to show how a 'tangent' flow can be extracted from a singular Ricci flow. Finally, all these threads are pulled together to give a modern proof of Hamilton's theorem that a closed three-dimensional manifold which carries a metric of positive Ricci curvature is a spherical space form.
This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmuller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation."
In this book invariant probabilities for a large class of
discrete-time homogeneous Markov processes known as Feller
processes are discussed. These Feller processes appear in the study
of iterated function systems with probabilities, convolution
operators, certain time series, etc. Rather than dealing with the
processes, the transition probabilities and the operators
associated with these processes are studied.
The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P.D.E.s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.
This book contains a self-consistent treatment of a geometric averaging technique, induced by the Ricci flow, that allows comparing a given (generalized) Einstein initial data set with another distinct Einstein initial data set, both supported on a given closed n-dimensional manifold. This is a case study where two vibrant areas of research in geometric analysis, Ricci flow and Einstein constraints theory, interact in a quite remarkable way. The interaction is of great relevance for applications in relativistic cosmology, allowing a mathematically rigorous approach to the initial data set averaging problem, at least when data sets are given on a closed space-like hypersurface. The book does not assume an a priori knowledge of Ricci flow theory, and considerable space is left for introducing the necessary techniques. These introductory parts gently evolve to a detailed discussion of the more advanced results concerning a Fourier-mode expansion and a sophisticated heat kernel representation of the Ricci flow, both of which are of independent interest in Ricci flow theory. This work is intended for advanced students in mathematical physics and researchers alike.
This book describes integration and measure theory for readers interested in analysis, engineering, and economics. It gives a systematic account of Riemann-Stieltjes integration and deduces the Lebesgue-Stieltjes measure from the Lebesgue-Stieltjes integral.
The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Frechet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C DEGREES\infinity-rings and C DEGREES\infinity-schemes, as well as in the framework of Spallek's C DEGREES\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Frechet spaces."
This volume collects the papers accepted for presentation at the 10th IMA C- ference on the Mathematics of Surfaces, held at the University of Leeds, UK, September 15-17, 2003. As with all earlier conferences in the series, contributors to this volume come from a wide variety of countries in Asia, Europe and North America. The papers presented here re?ect the continued relevance of the s- ject, and, by comparison with the contents of earlier volumes in the series, the changing nature of application areas and mathematical techniques. To give the casual browser of these proceedings an idea of the diversity of the subject area, the papers in the present volume cover such topics and techniques as digital geometry processing, computer graphics, surface topology, medical applications, subdivision surfaces, surface reconstruction, surface triangulation, waterma- ing, data compression, data smoothing, human-computer interaction, extracting shapeformshading,surfaceheightrecovery,reverseengineering,box-splines,the Plateau Problem, splines (a variety of papers), trans?nite blending, and a?ne arithmetic. There is also a paper in memory of the late Prof. Josef Hoschek of theTechnischeUniversit. atDarmstadt,co-authoredbyaformerresearchstudent, Prof. Bert Juttler, .. on the subject of using line congruences for parameterizing special algebraic surfaces. We would like to thank all those who attended the conference and helped to makeitasuccess. Inparticularwethankthosewhocontributedtotheseproce- ings.
Comprehensive coverage of the foundations, applications, recent
developments, and future of conformal differential geometry
A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C DEGREES*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C DEGREES*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
This book covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. It treats in detail classical results on the relations between curvature and topology. The book features numerous exercises with full solutions and a series of detailed examples are picked up repeatedly to illustrate each new definition or property introduced.
These notes deal with deformation theory of complex analytic singularities and related objects. The first part treats general theory. The central notion is that of versal deformationin several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations. The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern. Examples are spread throughout the text.
Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.
Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (u) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. AEFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmüller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmüller spaces.
This book is an expanded version of lectures given at a summer school on symplectic geometry in Nordfjordeid, Norway, in June 2001. The unifying feature of the book is an emphasis on Calabi-Yau manifolds. The first part discusses holonomy groups and calibrated submanifolds, focusing on special Lagrangian submanifolds and the SYZ conjecture. The second studies Calabi-Yau manifolds and mirror symmetry, using algebraic geometry. The final part describes compact hyperkahler manifolds, which have a geometric structure very closely related to Calabi-Yau manifolds. The book is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory and intended as an introductory text, requiring only limited background knowledge. Proofs or sketches are given for many important results. Moreover, exercises are provided.
The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-free and the terminology is that of modern differential geometry. Known results toward the complete proof of Riemannian Osserman conjecture are given and the Osserman conjecture in Lorentzian geometry is proved completely. Counterexamples to the Osserman conjuncture in generic semi-Riemannian signature are provided and properties of semi-Riemannian Osserman manifolds are investigated. |
You may like...
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, …
Hardcover
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev
Hardcover
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Heat Kernels for Elliptic and…
Ovidiu Calin, Der-Chen Chang, …
Hardcover
R2,895
Discovery Miles 28 950
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,124
Discovery Miles 11 240
|