![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
The five lectures presented in this volume address very timely mathematical problems in relativity and cosmology. "Part I" is devoted to the initial value and evolution problems of the Einstein equations. Especially it deals with the Einstein-Yang-Mills-Boltzmann system, fluid models with finite or infinite conductivity, global evolution of a new (two-phase) model for gravitational collapse and the structure of maximal, asymptotically flat, vacuum solutions of the constraint equations which have the additional property of containing trapped surfaces. "Part II" focuses on geometrical-topological problems in relativity and cosmology: on the role of cosmic censorship for the global structure of the Einstein-Maxwell equations and on the mathematical structure of quantum conformal superspace.
In recognition of professor Shiing-Shen Chern s long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern s total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This second volume comprises selected papers written between 1932 and 1965.
The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations, variational calculus, and complex analysis. As usual in such a situation, it may be tedious to collect all the necessary ingredients. The present book is intended to give the nonspecialist a solid introduction to the recent developments in symplectic and contact geometry. Chapter 1 gives a review of the symplectic group Sp(n, R), sympkctic manifolds, and Hamiltonian systems (last but not least to fix the notations). The 1\Iaslov index for closed curves as well as arcs in Sp(n, R) is discussed. This index will be used in chapters 5 and 8. Chapter 2 contains a more detailed account of symplectic manifolds start ing with a proof of the Darboux theorem saying that there are no local in variants in symplectic geometry. The most important examples of symplectic manifolds will be introduced: cotangent spaces and Kahler manifolds. Finally we discuss the theory of coadjoint orbits and the Kostant-Souriau theorem, which are concerned with the question of which homogeneous spaces carry a symplectic structure."
The book is a revised and updated version of the lectures given by the author at the University of Timi oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen- eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois- son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan- ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton- Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc- tion given by Kostant and Souriau around 1964.
Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help applied mathematics, computer science and engineering students and researchers gain a firm mathematical grounding to use these tools confidently in their research. Its chart-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
Asisknown,theLagrangeandHamiltongeometrieshaveappearedrelatively recently [76, 86]. Since 1980thesegeometrieshave beenintensivelystudied bymathematiciansandphysicistsfromRomania,Canada,Germany,Japan, Russia, Hungary,e.S.A. etc. PrestigiousscientificmeetingsdevotedtoLagrangeandHamiltongeome- tries and their applications have been organized in the above mentioned countries and a number ofbooks and monographs have been published by specialists in the field: R. Miron [94, 95], R. Mironand M. Anastasiei [99, 100], R. Miron, D. Hrimiuc, H. Shimadaand S.Sabau [115], P.L. Antonelli, R. Ingardenand M.Matsumoto [7]. Finslerspaces,whichformasubclassof theclassofLagrangespaces, havebeenthesubjectofsomeexcellentbooks, forexampleby:Yl.Matsumoto[76], M.AbateandG.Patrizio[1],D.Bao,S.S. Chernand Z.Shen [17]andA.BejancuandH.R.Farran [20]. Also, wewould liketopointoutthemonographsofM. Crampin [34], O.Krupkova [72] and D.Opri~,I.Butulescu [125],D.Saunders [144],whichcontainpertinentappli- cationsinanalyticalmechanicsandinthetheoryofpartialdifferentialequa- tions. Applicationsinmechanics, cosmology,theoreticalphysicsandbiology can be found in the well known books ofP.L. Antonelliand T.Zawstaniak [11], G. S. Asanov [14]' S. Ikeda [59], :VI. de LeoneandP.Rodrigues [73]. TheimportanceofLagrangeandHamiltongeometriesconsistsofthefact that variational problems for important Lagrangiansor Hamiltonians have numerous applicationsinvariousfields, such asmathematics, thetheoryof dynamicalsystems, optimalcontrol, biology,andeconomy. Inthisrespect, P.L. Antonelli'sremark isinteresting: "ThereisnowstrongevidencethatthesymplecticgeometryofHamilto- niandynamicalsystemsisdeeplyconnectedtoCartangeometry,thedualof Finslergeometry", (seeV.I.Arnold,I.M.GelfandandV.S.Retach [13]). The above mentioned applications have also imposed the introduction x RaduMiron ofthe notionsofhigherorder Lagrangespacesand, ofcourse, higherorder Hamilton spaces. The base manifolds ofthese spaces are bundles ofaccel- erations ofsuperior order. The methods used in the construction ofthese geometries are the natural extensions ofthe classical methods used in the edification ofLagrange and Hamilton geometries. These methods allow us to solvean old problemofdifferentialgeometryformulated by Bianchiand Bompiani [94]morethan 100yearsago,namelytheproblemofprolongation ofaRiemannianstructure gdefinedonthebasemanifoldM,tothetangent k bundleT M, k> 1. Bymeansofthissolutionofthe previousproblem, we canconstruct, for thefirst time,goodexamplesofregularLagrangiansand Hamiltoniansofhigherorder.
Addressing graduate students and researchers in physics and mathematics, this book fills a gap in the literature. It is an introduction into modern constructive physics, field theory and statistical mechanics and a survey on the most recent research in this field. It presents the main technical tools such as cluster expansion and their implementation in the rigorous renormalization group, and studies physical models in some detail. The reader will find a study of the ultraviolet limit of the Gross-Neveu model, of continuous symmetry breaking and of self-avoiding random walks in statistical mechanics, as well as applications to solid-state physics. Mathematicians will find constructive methods useful for studies in partial differential equations.
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.
In succesion to former international meetings on differential geometry held in Hungary and also as a satellite conference of ECM96, the European Mathematical Congress, a Conference on Differential Geometry took place in Budapest from July 27 to July 30, 1996. The host of the Conference was Lorand Eotvos University. The Conference had the following Programme Committee: D.V. Alekseevsky, J.J. Duistermaat, J. Eells, A. Haefliger, O. Kowalski, S. Marchifava, J. Szenthe, L. Tamassy, L. Vanhecke. The participants came mainly from Europe and their total number was 190. The programme included plenary lectures by J. Eliashberg, S. Gallot, O. Kowalski, B. Leeb, and also 135 lectures in 4 sections. The social events, an opening reception and a farewel party, presented inspiring atmosphere to create scientific contacts and also for fruitful discussions. In preparation of the Conference and during it B. Csikos and G. Moussong were constanly ready to help. The present volume contains detailed versions of lectures presented at the Conference and also a list of participants. The subjects cover a wide variety of topics in differential geometry and its applications and all of them contain essential new developments in their respective subjects. It is my pleasant duty to thank the participants who contributed to the success of the Conference, especially those who offered us their manuscripts for publication and also the referees who made several important observa- tions. The preparation of the volume was managed with the assistance of E. Daroczy-Kiss.
This book is an outgrowth of the Workshop on "Regulators in Analysis, Geom etry and Number Theory" held at the Edmund Landau Center for Research in Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During the preparation and the holding of the workshop we were greatly helped by the director of the Landau Center: Lior Tsafriri during the time of the planning of the conference, and Hershel Farkas during the meeting itself. Organizing and running this workshop was a true pleasure, thanks to the expert technical help provided by the Landau Center in general, and by its secretary Simcha Kojman in particular. We would like to express our hearty thanks to all of them. However, the articles assembled in the present volume do not represent the proceedings of this workshop; neither could all contributors to the book make it to the meeting, nor do the contributions herein necessarily reflect talks given in Jerusalem. In the introduction, we outline our view of the theory to which this volume intends to contribute. The crucial objective of the present volume is to bring together concepts, methods, and results from analysis, differential as well as algebraic geometry, and number theory in order to work towards a deeper and more comprehensive understanding of regulators and secondary invariants. Our thanks go to all the participants of the workshop and authors of this volume. May the readers of this book enjoy and profit from the combination of mathematical ideas here documented."
This interesting book deals with the theory of convex and starlike biholomorphic mappings in several complex variables. The underly- ing theme is the extension to several complex variables of geometric aspects of the classical theory of univalent functions. Because the author's introduction provides an excellent overview of the content of the book, I will not duplicate the effort here. Rather, I will place the book into historical context. The theory of univalent functions long has been an important part of the study of holomorphic functions of one complex variable. The roots of the subject go back to the famous Riemann Mapping Theorem which asserts that a simply connected region n which is a proper subset of the complex plane C is biholomorphically equivalent to the open unit disk ~. That is, there is a univalent function (holo- morphic bijection) I : ~ -+ n. In the early part of this century work began to focus on the class S of normalized (f (0) = 0 and I' (0) = 1) univalent functions defined on the unit disk. The restriction to uni- valent functions defined on the unit disk is justified by the Riemann Mapping Theorem. The subject contains many beautiful results that were obtained by fundamental techniques developed by many mathe- maticians, including Koebe, Bieberbach, Loewner, Goluzin, Grunsky, and Schiffer. The best-known aspect of univalent function theory is the so-called Bieberbach conjecture which was proved by de Branges in 1984.
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory."
The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.
The erratic motion of pollen grains and other tiny particles suspended in liquid is known as Brownian motion, after its discoverer, Robert Brown, a botanist who worked in 1828, in London. He turned over the problem of why this motion occurred to physicists who were investigating kinetic theory and thermodynamics; at a time when the existence of molecules had yet to be established. In 1900, Henri Poincare lectured on this topic to the 1900 International Congress of Physicists, in Paris [Wic95]. At this time, Louis Bachelier, a thesis student of Poincare, made a monumental breakthrough with his Theory of Stock Market Fluctuations, which is still studied today, [Co064]. Norbert Wiener (1923), who was first to formulate a rigorous concept of the Brownian path, is most often cited by mathematicians as the father of the subject, while physicists will cite A. Einstein (1905) and M. Smoluchowski. Both considered Markov diffusions and realized that Brownian behaviour nd could be formulated in terms of parabolic 2 order linear p. d. e. 'so Further more, from this perspective, the covariance of changes in position could be allowed to depend on the position itself, according to the invariant form of the diffusion introduced by Kolmogorov in 1937, [KoI37]. Thus, any time homogeneous Markov diffusion could be written in terms of the Laplacian, intrinsically given by the symbol (covariance) of the p. d. e. , plus a drift vec tor. The theory was further advanced in 1949, when K.
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins .with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles."
Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc.
'Et moi, ... si favait III mmment en revenir, One service mathematics has rendered the je n'y serais point aile: ' human race. It has put CXlUImon sense back Iules Verne where it belongs. on the topmost shelf next to the dUlty canister lahelled 'discarded non- The series i. divergent; therefore we may be able to do something with it. Eric T. Bell O. Hesvi.ide Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d't tre of this series."
In succession to our former meetings on differential geometry a Colloquium took place in Debrecen from July 26 to July 30, 1994. The Colloquium was organized by the University of Debrecen, the Debrecen Branch of the Hungarian Academy of Sciences and supported by the Janos Bolyai Mathematical Society. The Colloquium and especially this proceedings volume received an important financial contribution form OMFB in the framework of the ACCORD Programme no. H9112-0855. The Organizing Committee was the following: S. Bacso, P.T. Nagy, L. Kozma (secretary), Gy. Soos, J. Szenthe (chairman) and L. Tamassy (chairman). It was pleasant to meet both the returning participants of our former colloquia and the numerous new guests. The Colloquium had 68 participants from 22 foreign countries and 18 from Hungary. At the opening we commemorated the 25th anniversary of the death of Otto Varga, the late Professor of the Debrecen University, one of the founders of Finsler geometry, the master of many differential of our country. The programme included 10 plenary lectures from: P.B. geometers Gilkey, R. Miron, I. Kolar, B. Wegner, D. Lehmann, o. Kowalski, T. Otsuki, K.B. Marathe, M. Crampin, W. Sarlet and 68 short lectures in 3 sections. The meeting created an inspiring atmosphere for fruitful discussions between the participants. The historical sites of the town Debrecen and its famous surroundings offered ideal to get to know Hungarian cultural traditions and for evening programmes.
This volume is based on the lectures given at the First Inter University Graduate School on Gravitation and Cosmology organized by IUCAA, Pune, in 1989. This series of Schools have been carefully planned to provide a sound background and preparation for students embarking on research in these and related topics. Consequently, the contents of these lectures have been meticulously selected and arranged. The topics in the present volume offer a firm mathematical foundation for a number of subjects to be de veloped later. These include Geometrical Methods for Physics, Quantum Field Theory Methods and Relativistic Cosmology. The style of the book is pedagogical and should appeal to students and research workers attempt ing to learn the modern techniques involved. A number of specially selected problems with hints and solutions have been included to assist the reader in achieving mastery of the topics. We decided to bring out this volume containing the lecture notes since we felt that they would be useful to a wider community of research workers, many of whom could not participate in the school. We thank all the lecturers for their meticulous lectures, the enthusiasm they brought to the discussions and for kindly writing up their lecture notes. It is a pleasure to thank G. Manjunatha for his meticulous assistence over a long period, in preparing this volume for publication."
The theory of foliations and contact forms have experienced such great de velopment recently that it is natural they have implications in the field of mechanics. They form part of the framework of what Jean Dieudonne calls "Elie Cartan's great theory ofthe Pfaffian systems", and which even nowa days is still far from being exhausted. The major reference work is. without any doubt that of Elie Cartan on Pfaffian systems with five variables. In it one discovers there the bases of an algebraic classification of these systems, their methods of reduction, and the highlighting ofthe first fundamental in variants. This work opens to us, even today, a colossal field of investigation and the mystery of a ternary form containing the differential invariants of the systems with five variables always deligthts anyone who wishes to find out about them. One of the goals of this memorandum is to present this work of Cartan - which was treated even more analytically by Goursat in its lectures on Pfaffian systems - in order to expound the classifications currently known. The theory offoliations and contact forms appear in the study ofcompletely integrable Pfaffian systems of rank one. In each of these situations there is a local model described either by Frobenius' theorem, or by Darboux' theorem. It is this type of theorem which it would be desirable to have for a non-integrable Pfaffian system which may also be of rank greater than one.
This book contains two contributions: "Combinatorial and Asymptotic Methods in Algebra" by V.A. Ufnarovskij is a survey of various combinatorial methods in infinite-dimensional algebras, widely interpreted to contain homological algebra and vigorously developing computer algebra, and narrowly interpreted as the study of algebraic objects defined by generators and their relations. The author shows how objects like words, graphs and automata provide valuable information in asymptotic studies. The main methods emply the notions of Grobner bases, generating functions, growth and those of homological algebra. Treated are also problems of relationships between different series, such as Hilbert, Poincare and Poincare-Betti series. Hyperbolic and quantum groups are also discussed. The reader does not need much of background material for he can find definitions and simple properties of the defined notions introduced along the way. "Non-Associative Structures" by E.N.Kuz'min and I.P.Shestakov surveys the modern state of the theory of non-associative structures that are nearly associative. Jordan, alternative, Malcev, and quasigroup algebras are discussed as well as applications of these structures in various areas of mathematics and primarily their relationship with the associative algebras. Quasigroups and loops are treated too. The survey is self-contained and complete with references to proofs in the literature. The book will be of great interest to graduate students and researchers in mathematics, computer science and theoretical physics."
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology. |
You may like...
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Hermitian-Grassmannian Submanifolds…
Young Jin Suh, Yoshihiro Ohnita, …
Hardcover
R4,769
Discovery Miles 47 690
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, …
Hardcover
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,124
Discovery Miles 11 240
|