![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
The book aims to present a comprehensive survey on biharmonic submanifolds and maps from the viewpoint of Riemannian geometry. It provides some basic knowledge and tools used in the study of the subject as well as an overall picture of the development of the subject with most up-to-date important results.Biharmonic submanifolds are submanifolds whose isometric immersions are biharmonic maps, thus biharmonic submanifolds include minimal submanifolds as a subclass. Biharmonic submanifolds also appeared in the study of finite type submanifolds in Euclidean spaces.Biharmonic maps are maps between Riemannian manifolds that are critical points of the bienergy. They are generalizations of harmonic maps and biharmonic functions which have many important applications and interesting links to many areas of mathematics and theoretical physics.Since 2000, biharmonic submanifolds and maps have become a vibrant research field with a growing number of researchers around the world, with many interesting results have been obtained.This book containing basic knowledge, tools for some fundamental problems and a comprehensive survey on the study of biharmonic submanifolds and maps will be greatly beneficial for graduate students and beginning researchers who want to study the subject, as well as researchers who have already been working in the field.
Black holes present one of the most fascinating predictions of Einstein's general theory of relativity. There is strong evidence of their existence through observation of active galactic nuclei, including the centre of our galaxy, observations of gravitational waves, and others. There exists a large scientific literature on black holes, including many excellent textbooks at various levels. However, most of these steer clear from the mathematical niceties needed to make the theory of black holes a mathematical theory. Those which maintain a high mathematical standard are either focused on specific topics, or skip many details. The objective of this book is to fill this gap and present a detailed, mathematically oriented, extended introduction to the subject. The book provides a wide background to the current research on all mathematical aspects of the geometry of black hole spacetimes.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians is the lack of a suitable text introducing the modern co-ordinate free approach to differential geometry in a manner accessible to statisticians.
This book is an exposition of "semi-Riemannian geometry" (also called "pseudo-Riemannian geometry")--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.
Noncommutative geometry combines themes from algebra, analysis and geometry and has significant applications to physics. This book focuses on cyclic theory, and is based upon the lecture courses by Daniel G. Quillen at the University of Oxford from 1988-92, which developed his own approach to the subject. The basic definitions, examples and exercises provided here allow non-specialists and students with a background in elementary functional analysis, commutative algebra and differential geometry to get to grips with the subject. Quillen's development of cyclic theory emphasizes analogies between commutative and noncommutative theories, in which he reinterpreted classical results of Hamiltonian mechanics, operator algebras and differential graded algebras into a new formalism. In this book, cyclic theory is developed from motivating examples and background towards general results. Themes covered are relevant to current research, including homomorphisms modulo powers of ideals, traces on noncommutative differential forms, quasi-free algebras and Chern characters on connections.
Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.
This collection presents the major mathematical works of Isadore Singer, selected by Singer himself, and organized thematically into three volumes: 1. Functional analysis, differential geometry and eigenvalues 2. Index theory 3. Gauge theory and physics Each volume begins with a commentary (and in the first volume, a short biography of Singer), and then presents the works on its theme in roughly chronological order.
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. It will be valuable also to the physicist as an introduction to some of the mathematics that has proved useful in these areas, and to the mathematician as an example of where sheaf cohomology and complex manifold theory can be used in physics.
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved.
This volume presents lectures given at the Summer School Wisla 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisla, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge-Ampere equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay of undergraduate mathematics education and a cornerstone of modern geometry. It is also the language used by Einstein to express general relativity, and so is an essential tool for astronomers and theoretical physicists. This introductory textbook originates from a popular course given to third year students at Durham University for over twenty years, first by the late L. M. Woodward and later by John Bolton (and others). It provides a thorough introduction by focusing on the beginnings of the subject as studied by Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential geometry - the definition and geometric meaning of Gaussian curvature, the Theorema Egregium, geodesics, and the Gauss-Bonnet Theorem - the treatment is modern and student-friendly, taking direct routes to explain, prove and apply the main results. It includes many exercises to test students' understanding of the material, and ends with a supplementary chapter on minimal surfaces that could be used as an extension towards advanced courses or as a source of student projects.
Manifolds are abound in mathematics and physics, and increasingly in cybernetics and visualization where they often reflect properties of complex systems and their configurations. Differential topology gives us the tools to study these spaces and extract information about the underlying systems. This book offers a concise and modern introduction to the core topics of differential topology for advanced undergraduates and beginning graduate students. It covers the basics on smooth manifolds and their tangent spaces before moving on to regular values and transversality, smooth flows and differential equations on manifolds, and the theory of vector bundles and locally trivial fibrations. The final chapter gives examples of local-to-global properties, a short introduction to Morse theory and a proof of Ehresmann's fibration theorem. The treatment is hands-on, including many concrete examples and exercises woven into the text, with hints provided to guide the student.
This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces - known as RCD spaces - satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of "infinitesimally Hilbertian" metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman-Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
The aim of this book is to describe Calabi's original work on Kahler immersions of Kahler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kahler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kahler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kahler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kahler geometry.
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge-Ampere and linearized Monge-Ampere equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge-Ampere equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton-Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton-Jacobi equations.
Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for physicists, touching briefly also on super-symmetric field theories. The core of the course is focused on the construction of simple Lie algebras, emphasizing the double interpretation of the ADE classification as applied to finite rotation groups and to simply laced simple Lie algebras. Unique features of this book are the full-fledged treatment of the exceptional Lie algebras and a rich collection of MATHEMATICA Notebooks implementing various group theoretical constructions.
Originally published in 1927, as the first of a two-part set, this informative and systematically organised textbook, primarily aimed at university students, contains a vectorial treatment of geometry, reasoning that by the use of such vector methods, geometry is able to be 'both simplified and condensed'. Chapters I-XI discuss the more elementary parts of the subject, whilst the remainder is devoted to an exploration of the more complex differential invariants for a surface and their applications. Chapter titles include, 'Curves with torsion', 'Geodesics and geodesic parallels' and 'Triply orthogonal systems of surfaces'. Diagrams are included to supplement the text. Providing a detailed overview of the subject and forming a solid foundation for study of multidimensional differential geometry and the tensor calculus, this book will prove an invaluable reference work to scholars of mathematics as well as to anyone with an interest in the history of education.
Originally published in 1930, as the second of a two-part set, this informative and systematically organized textbook, primarily aimed at university students, contains a vectorial treatment of geometry, reasoning that by the use of such vector methods, geometry is able to be both simplified and condensed. Topics covered include Flexion and Applicability of Surfaces, Levi-Civita's theory of parallel displacements on a surface and the theory of Curvilinear Congruences. Diagrams are included to supplement the text. Providing a detailed overview of the subject and forming a solid foundation for study of multidimensional differential geometry and the tensor calculus, this book will prove an invaluable reference work to scholars of mathematics as well as to anyone with an interest in the history of education.
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Developing and providing an overview of recent results on nearly Kahler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applications in high energy physics, such as supergravity and string theory. Before starting into the field, a self-contained introduction to the subject is given, aimed at students with a solid background in differential geometry. The book will therefore be accessible to masters and Ph.D. students who are beginning work on nearly Kahler geometry in pseudo-Riemannian signature, and also to non-experts interested in gaining an overview of the subject. Moreover, a number of results and techniques are provided which will be helpful for differential geometers as well as for high energy physicists interested in the mathematical background of the geometric objects they need. |
You may like...
George Washington's 1790 Grand Tour of…
Dr Joanne S Grasso
Paperback
|