0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1)
  • R250 - R500 (34)
  • R500+ (1,128)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry

Differentiable and Complex Dynamics of Several Variables (Paperback, Softcover reprint of hardcover 1st ed. 1999): Pei-Chu Hu,... Differentiable and Complex Dynamics of Several Variables (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Pei-Chu Hu, Chung-Chun Yang
R1,423 Discovery Miles 14 230 Ships in 18 - 22 working days

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.

Complex Spaces in Finsler, Lagrange and Hamilton Geometries (Paperback, Softcover reprint of hardcover 1st ed. 2004): Gheorghe... Complex Spaces in Finsler, Lagrange and Hamilton Geometries (Paperback, Softcover reprint of hardcover 1st ed. 2004)
Gheorghe Munteanu
R2,639 Discovery Miles 26 390 Ships in 18 - 22 working days

From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.

Singular Semi-Riemannian Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1996): D.N. Kupeli Singular Semi-Riemannian Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1996)
D.N. Kupeli
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I."

The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology (Paperback, Softcover reprint of hardcover 1st... The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology (Paperback, Softcover reprint of hardcover 1st ed. 1993)
P.L. Antonelli, Roman S. Ingarden, M. Matsumoto
R5,152 Discovery Miles 51 520 Ships in 18 - 22 working days

The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability."

Noncommutative Geometry and the Standard Model of Elementary Particle Physics (Paperback, Softcover reprint of the original 1st... Noncommutative Geometry and the Standard Model of Elementary Particle Physics (Paperback, Softcover reprint of the original 1st ed. 2002)
Florian Scheck, Wend Werner, Harald Upmeier
R2,672 Discovery Miles 26 720 Ships in 18 - 22 working days

Aconferenceon"NoncommutativeGeometryandtheStandardModelof- ementaryParticlePhysics"washeldattheHesselbergAcademy(innorthern Bavaria, Germany) during the week of March 14-19, 1999. The aim of the conference was to give a systematic exposition of the mathematical foun- tions and physical applications of noncommutative geometry, along the lines developedbyAlainConnes. Theconferencewasactuallypartofacontinuing series of conferences at the Hesselberg Academy held every three years and devoted to important developments in mathematical ?elds, such as geom- ricanalysis, operatoralgebras, indextheory, andrelatedtopicstogetherwith their applications to mathematical physics. The participants of the conference included mathematicians from fu- tional analysis, di?erential geometry and operator algebras, as well as - perts from mathematical physics interested in A. Connes' approach towards the standard model and other physical applications. Thus a large range of topics, from mathematical foundations to recent physical applications, could becoveredinasubstantialway. Theproceedingsofthisconference, organized in a coherent and systematic way, are presented here. Its three chapters c- respond to the main areas discussed during the conference: Chapter1. Foundations of Noncommutative Geometry and Basic Model Building Chapter2. The Lagrangian of the Standard Model Derived from Nonc- mutative Geometry Chapter3. New Directions in Noncommutative Geometry and Mathema- cal Physics During the conference the close interaction between mathematicians and mathematical physicists turned out to be quite fruitful and enlightening for both sides. Similarly, it is hoped that the proceedings presented here will be useful for mathematicians interested in basic physical questions and for physicists aiming at a more conceptual understanding of classical and qu- tum ?eld theory from a novel mathematical point of view.

Gauge Field Theory and Complex Geometry (Paperback, Softcover reprint of hardcover 2nd ed. 1997): N. Koblitz Gauge Field Theory and Complex Geometry (Paperback, Softcover reprint of hardcover 2nd ed. 1997)
N. Koblitz; Appendix by S. Merkulov; Yuri I Manin; Translated by Jr. King
R3,351 Discovery Miles 33 510 Ships in 18 - 22 working days

From the reviews: ..". focused mainly on complex differential geometry and holomorphic bundle theory. This is a powerful book, written by a very distinguished contributor to the field" (Contemporary Physics )"the book provides a large amount of background for current research across a spectrum of field. ... requires effort to read but it is worthwhile and rewarding" (New Zealand Math. Soc. Newsletter) " The contents are highly technical and the pace of the exposition is quite fast. Manin is an outstanding mathematician, and writer as well, perfectly at ease in the most abstract and complex situation. With such a guide the reader will be generously rewarded " (Physicalia) This new edition includes an Appendix on developments of the last 10 years, by S. Merkulov.

Partial Differential Equations and Group Theory - New Perspectives for Applications (Paperback, Softcover reprint of hardcover... Partial Differential Equations and Group Theory - New Perspectives for Applications (Paperback, Softcover reprint of hardcover 1st ed. 1994)
J.F. Pommaret
R1,461 Discovery Miles 14 610 Ships in 18 - 22 working days

Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry."

Meromorphic Functions and Projective Curves (Paperback, Softcover reprint of hardcover 1st ed. 1999): Kichoon Yang Meromorphic Functions and Projective Curves (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Kichoon Yang
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This book contains an exposition of the theory of meromorphic functions and linear series on a compact Riemann surface. Thus the main subject matter consists of holomorphic maps from a compact Riemann surface to complex projective space. Our emphasis is on families of meromorphic functions and holomorphic curves. Our approach is more geometric than algebraic along the lines of [Griffiths-Harrisl]. AIso, we have relied on the books [Namba] and [Arbarello-Cornalba-Griffiths-Harris] to agreat exten- nearly every result in Chapters 1 through 4 can be found in the union of these two books. Our primary motivation was to understand the totality of meromorphic functions on an algebraic curve. Though this is a classical subject and much is known about meromorphic functions, we felt that an accessible exposition was lacking in the current literature. Thus our book can be thought of as a modest effort to expose parts of the known theory of meromorphic functions and holomorphic curves with a geometric bent. We have tried to make the book self-contained and concise which meant that several major proofs not essential to further development of the theory had to be omitted. The book is targeted at the non-expert who wishes to leam enough about meromorphic functions and holomorphic curves so that helshe will be able to apply the results in hislher own research. For example, a differential geometer working in minimal surface theory may want to tind out more about the distribution pattern of poles and zeros of a meromorphic function.

Einstein's Field Equations and Their Physical Implications - Selected Essays in Honour of Jurgen Ehlers (Paperback,... Einstein's Field Equations and Their Physical Implications - Selected Essays in Honour of Jurgen Ehlers (Paperback, Softcover reprint of the original 1st ed. 2000)
Bernd G. Schmidt
R2,695 Discovery Miles 26 950 Ships in 18 - 22 working days

This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields.
The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.

Exterior Differential Systems and Equivalence Problems (Paperback, Softcover reprint of hardcover 1st ed. 1992): Kichoon Yang Exterior Differential Systems and Equivalence Problems (Paperback, Softcover reprint of hardcover 1st ed. 1992)
Kichoon Yang
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

tEl moi, "0, si j'avait su comment en revenir, je One service mathematics has rendered the n 'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlinea- ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other s- ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One s- vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Ridges in Image and Data Analysis (Paperback, Softcover reprint of hardcover 1st ed. 1996): D. Eberly Ridges in Image and Data Analysis (Paperback, Softcover reprint of hardcover 1st ed. 1996)
D. Eberly
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

The concept of ridges has appeared numerous times in the image processing liter ature. Sometimes the term is used in an intuitive sense. Other times a concrete definition is provided. In almost all cases the concept is used for very specific ap plications. When analyzing images or data sets, it is very natural for a scientist to measure critical behavior by considering maxima or minima of the data. These critical points are relatively easy to compute. Numerical packages always provide support for root finding or optimization, whether it be through bisection, Newton's method, conjugate gradient method, or other standard methods. It has not been natural for scientists to consider critical behavior in a higher-order sense. The con cept of ridge as a manifold of critical points is a natural extension of the concept of local maximum as an isolated critical point. However, almost no attention has been given to formalizing the concept. There is a need for a formal development. There is a need for understanding the computation issues that arise in the imple mentations. The purpose of this book is to address both needs by providing a formal mathematical foundation and a computational framework for ridges. The intended audience for this book includes anyone interested in exploring the use fulness of ridges in data analysis."

Scalar and Asymptotic Scalar Derivatives - Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 2008):... Scalar and Asymptotic Scalar Derivatives - Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 2008)
George Isac, Sandor Zoltan Nemeth
R2,644 Discovery Miles 26 440 Ships in 18 - 22 working days

This extremely useful book is devoted to the study of scalar and asymptotic scalar derivatives and their applications to some problems in nonlinear analysis, Riemannian geometry and applied mathematics. The theoretical results are developed in particular with respect to the study of complementarity problems, monotonicity of nonlinear mappings and the non-gradient type monotonicity on Riemannian manifolds. The text is intended for researchers and graduate students working in the fields of nonlinear analysis, Riemannian geometry and applied mathematics.

Lie Groups and Lie Algebras III - Structure of Lie Groups and Lie Algebras (Paperback, Softcover reprint of hardcover 1st ed.... Lie Groups and Lie Algebras III - Structure of Lie Groups and Lie Algebras (Paperback, Softcover reprint of hardcover 1st ed. 1994)
A.L. Onishchik, E.B. Vinberg
R3,776 Discovery Miles 37 760 Ships in 18 - 22 working days

The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras (including semisimple, solvable, and of general type). In particular, a modern approach to the description of automorphisms and gradings of semisimple Lie algebras is given. A special chapter is devoted to models of the exceptional Lie algebras. The book contains many tables and will serve as a reference. At the same time many results are accompanied by short proofs. Onishchik and Vinberg are internationally known specialists in their field and well-known for their monograph "Lie Groups and Algebraic Groups" (Springer-Verlag 1990). This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.

Geometry-Driven Diffusion in Computer Vision (Paperback, Softcover reprint of hardcover 1st ed. 1994): Bart M. Haar Romeny Geometry-Driven Diffusion in Computer Vision (Paperback, Softcover reprint of hardcover 1st ed. 1994)
Bart M. Haar Romeny
R2,700 Discovery Miles 27 000 Ships in 18 - 22 working days

Scale is a concept the antiquity of which can hardly be traced. Certainly the familiar phenomena that accompany sc ale changes in optical patterns are mentioned in the earliest written records. The most obvious topological changes such as the creation or annihilation of details have been a topic to philosophers, artists and later scientists. This appears to of fascination be the case for all cultures from which extensive written records exist. For th instance, chinese 17 c artist manuals remark that "distant faces have no eyes" . The merging of details is also obvious to many authors, e. g. , Lucretius mentions the fact that distant islands look like a single one. The one topo logical event that is (to the best of my knowledge) mentioned only late (by th John Ruskin in his "Elements of drawing" of the mid 19 c) is the splitting of a blob on blurring. The change of images on a gradual increase of resolu tion has been a recurring theme in the arts (e. g. , the poetic description of the distant armada in Calderon's The Constant Prince) and this "mystery" (as Ruskin calls it) is constantly exploited by painters.

Geometry of Pseudo-Finsler Submanifolds (Paperback, Softcover reprint of the original 1st ed. 2000): Aurel Bejancu, Hani Reda... Geometry of Pseudo-Finsler Submanifolds (Paperback, Softcover reprint of the original 1st ed. 2000)
Aurel Bejancu, Hani Reda Farran
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

Finsler geometry is the most natural generalization of Riemannian geo- metry. It started in 1918 when P. Finsler [1] wrote his thesis on curves and surfaces in what he called generalized metric spaces. Studying the geometry of those spaces (which where named Finsler spaces or Finsler manifolds) became an area of active research. Many important results on the subject have been brought together in several monographs (cf. , H. Rund [3], G. Asanov [1], M. Matsumoto [6], A. Bejancu [8], P. L. Antonelli, R. S. Ingar- den and M. Matsumoto [1], M. Abate and G. Patrizio [1] and R. Miron [3]) . However, the present book is the first in the literature that is entirely de- voted to studying the geometry of submanifolds of a Finsler manifold. Our exposition is also different in many other respects. For example, we work on pseudo-Finsler manifolds where in general the Finsler metric is only non- degenerate (rather than on the particular case of Finsler manifolds where the metric is positive definite). This is absolutely necessary for physical and biological applications of the subject. Secondly, we combine in our study both the classical coordinate approach and the modern coordinate-free ap- proach. Thirdly, our pseudo-Finsler manifolds F = (M, M', F*) are such that the geometric objects under study are defined on an open submani- fold M' of the tangent bundle T M, where M' need not be equal to the entire TMo = TM\O(M).

General Relativity - With Applications to Astrophysics (Paperback, Softcover reprint of hardcover 1st ed. 2004): Norbert... General Relativity - With Applications to Astrophysics (Paperback, Softcover reprint of hardcover 1st ed. 2004)
Norbert Straumann
R2,737 Discovery Miles 27 370 Ships in 18 - 22 working days

The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III.

The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics.

This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical.

Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system

Differential Geometry of Spray and Finsler Spaces (Paperback, Softcover reprint of hardcover 1st ed. 2001): Zhongmin Shen Differential Geometry of Spray and Finsler Spaces (Paperback, Softcover reprint of hardcover 1st ed. 2001)
Zhongmin Shen
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.

Metric Structures in Differential Geometry (Paperback, Softcover reprint of the original 1st ed. 2004): Gerard Walschap Metric Structures in Differential Geometry (Paperback, Softcover reprint of the original 1st ed. 2004)
Gerard Walschap
R1,803 Discovery Miles 18 030 Ships in 18 - 22 working days

This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.

Geometric Methods in Inverse Problems and PDE Control (Paperback, Softcover reprint of the original 1st ed. 2004): Chrisopher... Geometric Methods in Inverse Problems and PDE Control (Paperback, Softcover reprint of the original 1st ed. 2004)
Chrisopher B. Croke, Gunther Uhlmann, Irena Lasiecka, Michael Vogelius
R4,024 Discovery Miles 40 240 Ships in 18 - 22 working days

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.

Geometric Inequalities (Paperback, Softcover reprint of the original 1st ed. 1988): Yurii D. Burago Geometric Inequalities (Paperback, Softcover reprint of the original 1st ed. 1988)
Yurii D. Burago; Translated by A.B. Sossinsky; Viktor A. Zalgaller
R4,027 Discovery Miles 40 270 Ships in 18 - 22 working days

Geometrie inequalities have a wide range of applieations-within geometry itself as weIl as beyond its limits. The theory of funetions of a eomplex variable, the ealculus of variations in the large, embedding theorems of funetion spaees, a priori estimates for solutions of differential equations yield many sueh examples. We have attempted to piek out the most general inequalities and, in model eases, we exhibit effeetive geometrie eonstruetions and the means of proving sueh inequalities. A substantial part of this book deals with isoperimetrie inequalities and their generalizations, but, for all their variety, they do not exhaust the eontents ofthe book. The objeets under eonsideration, as a rule, are quite general. They are eurves, surfaees and other manifolds, embedded in an underlying space or supplied with an intrinsie metrie. Geometrie inequalities, used for different purposes, appear in different eontexts-surrounded by a variety ofteehnieal maehinery, with diverse require- ments for the objeets under study. Therefore the methods of proof will differ not only from ehapter to ehapter, but even within individual seetions. An inspeetion of monographs on algebraie and funetional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type.

Finsler and Lagrange Geometries - Proceedings of a Conference held on August 26-31, Iasi, Romania (Paperback, Softcover reprint... Finsler and Lagrange Geometries - Proceedings of a Conference held on August 26-31, Iasi, Romania (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Mihai Anastasiei, P.L. Antonelli
R2,665 Discovery Miles 26 650 Ships in 18 - 22 working days

In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications."

Basic Concepts of Synthetic Differential Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1996): R. Lavendhomme Basic Concepts of Synthetic Differential Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1996)
R. Lavendhomme
R5,156 Discovery Miles 51 560 Ships in 18 - 22 working days

Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.

Compact Lie Groups (Paperback, Softcover reprint of hardcover 1st ed. 2007): Mark R. Sepanski Compact Lie Groups (Paperback, Softcover reprint of hardcover 1st ed. 2007)
Mark R. Sepanski
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.

The Floer Memorial Volume (Paperback, Softcover reprint of the original 1st ed. 1995): Helmut Hofer, Clifford H. Taubes, Alan... The Floer Memorial Volume (Paperback, Softcover reprint of the original 1st ed. 1995)
Helmut Hofer, Clifford H. Taubes, Alan Weinstein, Eduard Zehnder
R2,761 Discovery Miles 27 610 Ships in 18 - 22 working days

Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder

Semiparallel Submanifolds in Space Forms (Paperback, Softcover reprint of hardcover 1st ed. 2009): UElo Lumiste Semiparallel Submanifolds in Space Forms (Paperback, Softcover reprint of hardcover 1st ed. 2009)
UElo Lumiste
R2,659 Discovery Miles 26 590 Ships in 18 - 22 working days

Quite simply, this book offers the most comprehensive survey to date of the theory of semiparallel submanifolds. It begins with the necessary background material, detailing symmetric and semisymmetric Riemannian manifolds, smooth manifolds in space forms, and parallel submanifolds. The book then introduces semiparallel submanifolds and gives some characterizations for their class as well as several subclasses. The coverage moves on to discuss the concept of main symmetric orbit and presents all known results concerning umbilic-like main symmetric orbits. With more than 40 published papers under his belt on the subject, Lumiste provides readers with the most authoritative treatment.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart Hardcover R1,124 Discovery Miles 11 240
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen Hardcover R5,379 Discovery Miles 53 790
Innovative Algorithms and Analysis
Laurent Gosse, Roberto Natalini Hardcover R3,802 Discovery Miles 38 020
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon Hardcover R3,614 Discovery Miles 36 140
Regularity of Minimal Surfaces
Ulrich Dierkes Hardcover R4,032 Discovery Miles 40 320
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, … Hardcover R4,185 R3,384 Discovery Miles 33 840
Introduction to Arithmetic Groups
Dave Witte Morris Hardcover R718 Discovery Miles 7 180
Recent Trends in Lorentzian Geometry
Miguel Sanchez, Miguel Ortega, … Hardcover R5,086 R4,765 Discovery Miles 47 650
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume Hardcover R3,027 R1,855 Discovery Miles 18 550
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli Paperback R1,960 Discovery Miles 19 600

 

Partners