![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
From the reviews of the 1st edition: "This book provides a comprehensive and detailed account of different topics in algorithmic 3-dimensional topology, culminating with the recognition procedure for Haken manifolds and including the up-to-date results in computer enumeration of 3-manifolds. Originating from lecture notes of various courses given by the author over a decade, the book is intended to combine the pedagogical approach of a graduate textbook (without exercises) with the completeness and reliability of a research monograph... All the material, with few exceptions, is presented from the peculiar point of view of special polyhedra and special spines of 3-manifolds. This choice contributes to keep the level of the exposition really elementary. In conclusion, the reviewer subscribes to the quotation from the back cover: "the book fills a gap in the existing literature and will become a standard reference for algorithmic 3-dimensional topology both for graduate students and researchers." Zentralblatt fur Mathematik 2004 For this 2nd edition, new results, new proofs, and commentaries for a better orientation of the reader have been added. In particular, in Chapter 7 several new sections concerning applications of the computer program "3-Manifold Recognizer" have been included. "
The text of this book has its origins more than twenty- ve years ago. In the seminar of the Dutch Singularity Theory project in 1982 and 1983, the second-named author gave a series of lectures on Mixed Hodge Structures and Singularities, accompanied by a set of hand-written notes. The publication of these notes was prevented by a revolution in the subject due to Morihiko Saito: the introduction of the theory of Mixed Hodge Modules around 1985. Understanding this theory was at the same time of great importance and very hard, due to the fact that it uni es many di erent theories which are quite complicated themselves: algebraic D-modules and perverse sheaves. The present book intends to provide a comprehensive text about Mixed Hodge Theory with a view towards Mixed Hodge Modules. The approach to Hodge theory for singular spaces is due to Navarro and his collaborators, whose results provide stronger vanishing results than Deligne s original theory. Navarro and Guill en also lled a gap in the proof that the weight ltration on the nearby cohomology is the right one. In that sense the present book corrects and completes the second-named author s thesis."
Supermanifolds and Supergroups explains the basic ingredients of super manifolds and super Lie groups. It starts with super linear algebra and follows with a treatment of super smooth functions and the basic definition of a super manifold. When discussing the tangent bundle, integration of vector fields is treated as well as the machinery of differential forms. For super Lie groups the standard results are shown, including the construction of a super Lie group for any super Lie algebra. The last chapter is entirely devoted to super connections. The book requires standard undergraduate knowledge on super differential geometry and super Lie groups.
The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it.
This book is the first to systematically explore the classification and function theory of complex homogeneous bounded domains. The Siegel domains are discussed in detail, and proofs are presented. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
The first survey of its kind, written by internationally known, outstanding experts who developed substantial parts of the field. The book contains an introduction written by Remmert, describing the history of the subject, and is very useful to graduate students and researchers in complex analysis, algebraic geometry and differential geometry.
A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields."
'Guillemin and HaineaEURO (TM)s goal is to construct a well-documented road map that extends undergraduate understanding of multivariable calculus into the theory of differential forms. Throughout, the authors emphasize connections between differential forms and topology while making connections to single and multivariable calculus via the change of variables formula, vector space duals, physics; classical mechanisms, div, curl, grad, BrouweraEURO (TM)s fixed-point theorem, divergence theorem, and StokesaEURO (TM)s theorem ... The exercises support, apply and justify the developing road map.'CHOICEThere already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Cech cohomology groups of a differential manifold and its de Rham cohomology groups.
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
The central theme of this book is the restoration of Poincare duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. Highlights include complete and detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures."
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous K hler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische R ume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement sym triques.- S. Murakami: Plongements holomorphes de domaines sym triques.- E.M. Stein: The analogues of Fatous 's theorem and estimates for maximal functions.
In the 60's, the work of Anderson, Chernavski, Kirby and Edwards showed that the group of homeomorphisms of a smooth manifold which are isotopic to the identity is a simple group. This led Smale to conjecture that the group Diff'" (M)o of cr diffeomorphisms, r ~ 1, of a smooth manifold M, with compact supports, and isotopic to the identity through compactly supported isotopies, is a simple group as well. In this monograph, we give a fairly detailed proof that DifF(M)o is a simple group. This theorem was proved by Herman in the case M is the torus rn in 1971, as a consequence of the Nash-Moser-Sergeraert implicit function theorem. Thurston showed in 1974 how Herman's result on rn implies the general theorem for any smooth manifold M. The key idea was to vision an isotopy in Diff'"(M) as a foliation on M x [0, 1]. In fact he discovered a deep connection between the local homology of the group of diffeomorphisms and the homology of the Haefliger classifying space for foliations. Thurston's paper [180] contains just a brief sketch of the proof. The details have been worked out by Mather [120], [124], [125], and the author [12]. This circle of ideas that we call the "Thurston tricks" is discussed in chapter 2. It explains how in certain groups of diffeomorphisms, perfectness leads to simplicity. In connection with these ideas, we discuss Epstein's theory [52], which we apply to contact diffeomorphisms in chapter 6.
This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.
Application of the concepts and methods of topology and geometry have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, gravity and particle physics. This book can be considered an advanced textbook on modern applications and recent developments in these fields of physical research. Written as a set of largely self-contained extensive lectures, the book gives an introduction to topological concepts in gauge theories, BRST quantization, chiral anomalies, sypersymmetric solitons and noncommutative geometry. It will be of benefit to postgraduate students, educating newcomers to the field and lecturers looking for advanced material.
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Linear elliptic equations arise in several models describing various phenomena in the applied sciences, the most famous being the second order stationary heat eq- tion or,equivalently,the membraneequation. Forthis intensivelywell-studiedlinear problem there are two main lines of results. The ?rst line consists of existence and regularity results. Usually the solution exists and "gains two orders of differen- ation" with respect to the source term. The second line contains comparison type results, namely the property that a positive source term implies that the solution is positive under suitable side constraints such as homogeneous Dirichlet bou- ary conditions. This property is often also called positivity preserving or, simply, maximum principle. These kinds of results hold for general second order elliptic problems, see the books by Gilbarg-Trudinger [198] and Protter-Weinberger [347]. For linear higher order elliptic problems the existence and regularitytype results - main, as one may say, in their full generality whereas comparison type results may fail. Here and in the sequel "higher order" means order at least four. Most interesting models, however, are nonlinear. By now, the theory of second order elliptic problems is quite well developed for semilinear, quasilinear and even for some fully nonlinear problems. If one looks closely at the tools being used in the proofs, then one ?nds that many results bene?t in some way from the positivity preserving property. Techniques based on Harnack's inequality, De Giorgi-Nash- Moser's iteration, viscosity solutions etc.
In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs (-expanders-). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related."
Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.
This overview is based on the talk [101] given at the mini-workshop 0648c "Dirac operators in di?erential and non-commutative geometry", Mat- matisches Forschungsinstitut Oberwolfach. Intended for non-specialists, it explores the spectrum of the fundamental Dirac operator on Riemannian spin manifolds, including recent research and open problems. No background in spin geometry is required; nevertheless the reader is assumed to be fam- iar with basic notions of di?erential geometry (manifolds, Lie groups, vector and principal bundles, coverings, connections, and di?erential forms). The surveys [41, 132], which themselves provide a very good insight into closed manifolds, served as the starting point. We hope the content of this book re?ects the wide range of ?ndings on and sometimes amazing applications of the spin side of spectral theory and will attract a new audience to the topic. vii Acknowledgements TheauthorwouldliketothanktheMathematischesForschungsinstitutOb- wolfach for its friendly hospitality and stimulating atmosphere, as well as the organizers and all those who participated in the mini-workshop. This s- vey would not have been possible without the encouragement and advice of Christian B.. ar and Oussama Hijazi as well as the support of the German Research Foundation's Sonderforschungsbereich 647 "Raum, Zeit, Materie. Analytische und geometrische Strukturen" (Collaborative Research Center 647/Space, Time and Matter. Analytical and Geometric Structures). We would also like to thank Bernd Ammann and Nadine Grosse for their enlig- eningdiscussions and usefulreferences.
Der vorliegende Klassiker bietet Studierenden und Forschenden in den Gebieten der Theoretischen und Mathematischen Physik eine ideale Einfuhrung in die Differentialgeometrie und Topologie. Beides sind wichtige Werkzeuge in den Gebieten der Astrophysik, der Teilchen- und Festkoerperphysik. Das Buch fuhrt durch: - Pfadintegralmethode und Eichtheorie - Mathematische Grundlagen von Abbildungen, Vektorraumen und Topologie - Fortgeschrittene Konzepte der Geometrie und Topologie und deren Anwendungen im Bereich der Flussigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie - Eine Zusammenfuhrung von Geometrie und Topologie: Faserbundel, charakteristische Klassen und Indextheoreme - Anwendungen von Geometrie und Topologie in der modernen Physik: Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer geometrischen Perspektive
This volume contains the notes of lectures given at the School "Quantum Potential Theory: Structure and Applications to Physics." This school was held at the Alfried Krupp Wissenschaftskolleg in Greifswald from February 26 to March 9, 2007. We thank the lecturers for the hard work they - complished in preparing and giving these lectures and in writing these notes. Theirlecturesgiveanintroductiontocurrentresearchintheirdomains, which is essentially self-contained and should be accessible to Ph.D. students. We hope that this volume will help to bring together researchers from the areas of classical and quantum probability, functional analysis and operator al- bras, and theoretical and mathematical physics, and contribute in this way to developing further the subject of quantum potential theory. We are greatly indebted to the Alfried Krupp von Bohlen und Halbach- Stiftung for the ?nancial support, without which the school would not have been possible. We are also very thankful for the support by the University of Greifswald and the University of Franche-Comt e.One of the organisers(UF) wassupportedby a MarieCurieOutgoingInternationalFellowshipofthe EU (Contract Q-MALL MOIF-CT-2006-022137). Special thanks go to Melanie Hinz who helped with the preparation and organisation of the school and who took care of all of the logistics. Finally, we would like to thank all the students for coming to Greifswald and helping to make the school a success."
Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem. Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Frechet differentiable. This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis."
In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions. |
![]() ![]() You may like...
Recording & Representing Knowledge…
Ria A Schmidt, Robert J. Marzano
Paperback
Emmanuel Levinas and the Politics of…
Victoria Tahmasebi-Birgani
Hardcover
R1,693
Discovery Miles 16 930
Jurassic World Fallen Kingdom Raptor…
Egmont Publishing UK
Board book
|