![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
The geometrical methods in modem mathematical physics and the developments in Geometry and Global Analysis motivated by physical problems are being intensively worked out in contemporary mathematics. In particular, during the last decades a new branch of Global Analysis, Stochastic Differential Geometry, was formed to meet the needs of Mathematical Physics. It deals with a lot of various second order differential equations on finite and infinite-dimensional manifolds arising in Physics, and its validity is based on the deep inter-relation between modem Differential Geometry and certain parts of the Theory of Stochastic Processes, discovered not so long ago. The foundation of our topic is presented in the contemporary mathematical literature by a lot of publications devoted to certain parts of the above-mentioned themes and connected with the scope of material of this book. There exist some monographs on Stochastic Differential Equations on Manifolds (e. g. [9,36,38,87]) based on the Stratonovich approach. In [7] there is a detailed description of It6 equations on manifolds in Belopolskaya-Dalecky form. Nelson's book [94] deals with Stochastic Mechanics and mean derivatives on Riemannian Manifolds. The books and survey papers on the Lagrange approach to Hydrodynamics [2,31,73,88], etc. , give good presentations of the use of infinite-dimensional ordinary differential geometry in ideal hydrodynamics. We should also refer here to [89,102], to the previous books by the author [53,64], and to many others.
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum."
A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.
Many physical phenomena are described by nonlinear evolution
equation. Those that are integrable provide various mathematical
methods, presented by experts in this tutorial book, to find
special analytic solutions to both integrable and partially
integrable equations. The direct method to build solutions includes
the analysis of singularities a la Painleve, Lie symmetries leaving
the equation invariant, extension of the Hirota method,
construction of the nonlinear superposition formula. The main
inverse method described here relies on the bi-hamiltonian
structure of integrable equations. The book also presents some
extension to equations with discrete independent and dependent
variables.
This monograph is mostly devoted to the problem of the geome- trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La- grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non- linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc."
This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.
Gauge theory, symplectic geometry and symplectic topology are important areas at the crossroads of several mathematical disciplines. The present book, with expertly written surveys of recent developments in these areas, includes some of the first expository material of Seiberg-Witten theory, which has revolutionised the subjects since its introduction in late 1994. Topics covered include: introductions to Seiberg-Witten theory, to applications of the S-W theory to four-dimensional manifold topology, and to the classification of symplectic manifolds; an introduction to the theory of pseudo-holomorphic curves and to quantum cohomology; algebraically integrable Hamiltonian systems and moduli spaces; the stable topology of gauge theory, Morse-Floer theory; pseudo-convexity and its relations to symplectic geometry; generating functions; Frobenius manifolds and topological quantum field theory.
Gaussian scale-space is one of the best understood multi-resolution techniques available to the computer vision and image analysis community. It is the purpose of this book to guide the reader through some of its main aspects. During an intensive weekend in May 1996 a workshop on Gaussian scale-space theory was held in Copenhagen, which was attended by many of the leading experts in the field. The bulk of this book originates from this workshop. Presently there exist only two books on the subject. In contrast to Lindeberg's monograph (Lindeberg, 1994e) this book collects contributions from several scale space researchers, whereas it complements the book edited by ter Haar Romeny (Haar Romeny, 1994) on non-linear techniques by focusing on linear diffusion. This book is divided into four parts. The reader not so familiar with scale-space will find it instructive to first consider some potential applications described in Part 1. Parts II and III both address fundamental aspects of scale-space. Whereas scale is treated as an essentially arbitrary constant in the former, the latter em phasizes the deep structure, i.e. the structure that is revealed by varying scale. Finally, Part IV is devoted to non-linear extensions, notably non-linear diffusion techniques and morphological scale-spaces, and their relation to the linear case. The Danish National Science Research Council is gratefully acknowledged for providing financial support for the workshop under grant no. 9502164."
This book develops a modern presentation of Continuum Mechanics, oriented towards numerical applications in the ?elds of nonlinear analysis of solids, structures and ?uids. Kinematics of the continuum deformation, including pull-back/push-forward transformations between di erent con?gurations; stress and strain measures; objective stress rate and strain rate measures; balance principles; constitutive relations, with emphasis on elasto-plasticity of metals and variational prin- ples are developed using general curvilinear coordinates. Being tensor analysis the indispensable tool for the development of the continuum theory in general coordinates, in the appendix an overview of t- soranalysisisalsopresented. Embedded in the theoretical presentation, application examples are dev- oped to deepen the understanding of the discussed concepts. Even though the mathematical presentation of the di erent topics is quite rigorous; an e ort is made to link formal developments with engineering ph- ical intuition. This book is based on two graduate courses that the authors teach at the Engineering School of the University of Buenos Aires and it is intended for graduate engineering students majoring in mechanics and for researchers in the ?elds of applied mechanics and numerical methods. VIII Preface I am grateful to Klaus-Jurgen Bathe for introducing me to Computational Mechanics, for his enthusiasm, for his encouragement to undertake challenges and for his friendship."
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are "two-dimensional," in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental "Korn inequality on a surface" and to an "in?nit- imal rigid displacement lemma on a surface." This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se, suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book "Mathematical Elasticity, Volume III: Theory of Shells," published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
In this book the authors develop and work out applications to gravity and gauge theories and their interactions with generic matter fields, including spinors in full detail. Spinor fields in particular appear to be the prototypes of truly gauge-natural objects, which are not purely gauge nor purely natural, so that they are a paradigmatic example of the intriguing relations between gauge natural geometry and physical phenomenology. In particular, the gauge natural framework for spinors is developed in this book in full detail, and it is shown to be fundamentally related to the interaction between fermions and dynamical tetrad gravity.
The book covers topics in the theory of algebraic transformation groups and algebraic varieties which are very much at the frontier of mathematical research.
This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur faces. This philosophy is first indicated in the fundamental theorem of Chern and Osserman: A complete minimal surface M immersed in R3 is of finite total curvature if and only if M with its induced conformal structure is conformally equivalent to a compact Riemann surface Mg punctured at a finite set E of points and the tangential Gauss map extends to a holomorphic map Mg _ P2. Thus a finite total curvature complete minimal surface in R3 gives rise to a plane algebraic curve. Let Mg denote a fixed but otherwise arbitrary compact Riemann surface of genus g. A positive integer r is called a puncture number for Mg if Mg can be conformally immersed into R3 as a complete finite total curvature minimal surface with exactly r punctures; the set of all puncture numbers for Mg is denoted by P (M ). For example, Jorge and Meeks JM] showed, by constructing an example g for each r, that every positive integer r is a puncture number for the Riemann surface pl."
In inverse problems, the aim is to obtain, via a mathematical model, information on quantities that are not directly observable but rather depend on other observable quantities. Inverse problems are encountered in such diverse areas of application as medical imaging, remote sensing, material testing, geosciences and financing. It has become evident that new ideas coming from differential geometry and modern analysis are needed to tackle even some of the most classical inverse problems. This book contains a collection of presentations, written by leading specialists, aiming to give the reader up-to-date tools for understanding the current developments in the field.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M."
The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.
Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds. Their book will be used by graduate students and researchers in mathematics and mathematical physics.
The present volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such as closed curves and surfaces and other domain contours. The first part of the book introduces the mathematical concept required for treating the manifolds considered. An introduction to the theory of motion of curves and surfaces is given. The second and third parts discuss the modeling of various physical solitons on compact systems.
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
The present book is a translation and an expansion of lecture notes cor- sponding to a course of Mathematics of Control delivered during four years at the Ecole Nationale des Ponts et Chauss ees (Marne-la-Vall ee, France) to Master students. A reduced version of this course has also been given at the Master level at the University of Paris-Sud since eight years. It may the- fore serve as lecture notes for teaching at the Master or PhD level but also as a comprehensive introduction to researchers interested in atness and more generally in the mathematical theory of nite dimensional systems and c- trol. This book may be seen as an outcome of the applied research policy pi- oneered by the Ecole des Mines de Paris (now MINES-ParisTech), France, aiming not only at academic excellence, but also at collaborating with - dustries on speci c innovative projects to enhance technological innovation using the most advanced know-how. This in uence, though indirectly visible, mainly concerns the originality of some of the topics addressed here which are, in a sense, a theoretic synthesis of the author's applied contributions and viewpoints in the control eld, continuously elaborated and modi ed in contact with the industrial realities. Such a synthesis wouldn't have been made possible without the scienti c trust and nancial support of many c- panies during periods ranging from two to ten years.
This collection of survey lectures in mathematics traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Technical University (ETH) at Zurich, as student, lecturer, professor, and professor emeritus.
General relativity ranks among the most accurately tested fundamental theories in all of physics. Deficiencies in mathematical and conceptual understanding still exist, hampering further progress. This book collects surveys by experts in mathematical relativity writing about the current status of, and problems in, their fields. There are four contributions for each of the following mathematical areas: differential geometry and differential topology, analytical methods and differential equations, and numerical methods. |
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Pot-Honey - A legacy of stingless bees
Patricia Vit, Silvia R. M. Pedro, …
Hardcover
R8,087
Discovery Miles 80 870
The Law of Misstatements - 50 Years on…
Kit Barker, Ross Grantham, …
Hardcover
R3,468
Discovery Miles 34 680
|