![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kahler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.
The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.
This book contains an up-to-date survey and self-contained chapters on contact slant submanifolds and geometry, authored by internationally renowned researchers. The notion of slant submanifolds was introduced by Prof. B.Y. Chen in 1990, and A. Lotta extended this notion in the framework of contact geometry in 1996. Numerous differential geometers have since obtained interesting results on contact slant submanifolds. The book gathers a wide range of topics such as warped product semi-slant submanifolds, slant submersions, semi-slant -, hemi-slant -Riemannian submersions, quasi hemi-slant submanifolds, slant submanifolds of metric f-manifolds, slant lightlike submanifolds, geometric inequalities for slant submanifolds, 3-slant submanifolds, and semi-slant submanifolds of almost paracontact manifolds. The book also includes interesting results on slant curves and magnetic curves, where the latter represents trajectories moving on a Riemannian manifold under the action of magnetic field. It presents detailed information on the most recent advances in the area, making it of much value to scientists, educators and graduate students.
This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.
An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.
Starting from basic knowledge of nilpotent (Lie) groups, an algebraic theory of almost-Bieberbach groups, the fundamental groups of infra-nilmanifolds, is developed. These are a natural generalization of the well known Bieberbach groups and many results about ordinary Bieberbach groups turn out to generalize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
This introductory book is organized around a collection of simple experiments which the reader can perform at home or in a classroom setting. Methods for physically exploring the intrinsic geometry of commonplace curved objects (such as bowls, balls and watermelons) are described. The concepts of Gaussian curvature, parallel transport, and geodesics are treated.
Several books deal with Sobolev spaces on open subsets of R (n),
but none yet with Sobolev spaces on Riemannian manifolds, despite
the fact that the theory of Sobolev spaces on Riemannian manifolds
already goes back about 20 years. The book of Emmanuel Hebey will
fill this gap, and become a necessary reading for all using Sobolev
spaces on Riemannian manifolds.
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
The aim of these lecture notes is to give an essentially self-contained introduction to the basic regularity theory for energy minimizing maps, including recent developments concerning the structure of the singular set and asymptotics on approach to the singular set. Specialized knowledge in partial differential equations or the geometric calculus of variations is not required; a good general background in mathematical analysis would be adequate preparation.
From the reviews:
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
In dem Buch wird die Kurven- und Flachentheorie im 3-dimensionalen
euklidischen Raum behandelt und ein Maple-Programmpaket auf einer
CD zum konkreten Arbeiten geliefert.
This volume is an introduction and a monograph about tight polyhedra. The treatment of the 2-dimensional case is self- contained and fairly elementary. It would be suitable also for undergraduate seminars. Particular emphasis is given to the interplay of various special disciplines, such as geometry, elementary topology, combinatorics and convex polytopes in a way not found in other books. A typical result relates tight submanifolds to combinatorial properties of their convex hulls. The chapters on higher dimensions generalize the 2-dimensional case using concepts from combinatorics and topology, such as combinatorial Morse theory. A number of open problems is discussed.
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965."
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, K hlerianity, geodesics, curvature. Finally global geometry and complex Monge-Amp re equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
Classical algebraic geometry, inseparably connected with the names of Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other outstanding mathematicians of the last century, was mainly an analytical theory. In our century the methods and ideas of topology, commutative algebra and Grothendieck's schemes enriched it and seemed to have replaced once and forever the somewhat naive language of classical algebraic geometry. This classic book, written in 1897, covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.
This book brings together experts in the field to explain the ideas involved in the application of the theory of integrable systems to finding harmonic maps and related geometric objects. It had its genesis in a conference with the same title organised by the editors and held at Leeds in May 1992. However, it is not a conference proceedings, but rather a sequence of invited expositions by experts in the field which, we hope, together form a coherent account of the theory. The editors have added cross-references between articles and have written introductory articles in an effort to make the book self-contained. There are articles giving the points of view of both geometry and mathematical physics. Leeds, England A. P. Fordy October 1993 J. e. Wood Authors' addresses J. Bolton, Dept. of Math. Sciences, Univ. of Durham, South Road, Durham, DHI 3LE, UK A. I. Bobenko, FB Math., Tecbnische Univ., Strasse des 17. Juni. 135, 10623 Berlin, Germany M. Bordemann, Falc. fUr Physik, Albert-Ludwigs'Univ., H. -Herder-Str. 3, 79104 Freiburg, Germany F. E. Burstall, Dept. of Mathematics, Univ. of Bath, Claverton Down, Bath, BA 7 7 AY, UK A. P. Fordy, School of Mathematics, Univ. of Leeds, Leeds, LS2 9JT, UK M. Forger, Falc. fUr Physik, Albert-Ludwigs Univ., H. -Herder-Str. 3, 79104 Freiburg, Germany M. A. Guest, Dept. of Mathematics, Univ. of Rochester, Rochester, NY 14627, USA P. Z. Kobalc, Math. Institute, Univ. of Oxford, 24-29 St.
All the papers included in this volume are original research papers. They represent an important part of the work of French probabilists and colleagues with whom they are in close contact throughout the world. The main topics of the papers are martingale and Markov processes studies.
This text intends to provide the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. The geometry of surfaces is an ideal starting point for students learning geometry for the following reasons; first, the extensions offer the simplest possible introduction to fundamentals of modern geometry: curvature, group actions and covering spaces. Second, the prerequisites are modest and standard and include only a little linear algebra, calculus, basic group theory and basic topology. Third and most important, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. They realize all the topological types of compact two-dimensional manifolds, and historically, they are the source of the main concepts of complex analysis, differential geometry, topology, and combinatorial group theory, as well as such hot topics as fractal geometry and string theory. The formal coverage is extended by exercises and informal discussions throughout the text.
Generalized Heisenberg groups, or H-type groups, introduced by A.
Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie
groups with a vast spectrum of properties and applications. These
harmonic spaces are homogeneous Hadamard manifolds containing the
H-type groups as horospheres.
The book's main concern is automorphisms of Riemann surfaces, giving a foundational treatment from the point of view of Galois coverings, and treating the problem of the largest automorphism group for a Riemann surface of a given genus. In addition, the extent to which fixed points of automorphisms are generalized Weierstrass points is considered. The extremely useful inequality of Castelnuovo- Severi is also treated. While the methods are elementary, much of the material does not appear in the current texts on Riemann surfaces, algebraic curves. The book is accessible to a reader who has had an introductory course on the theory of Riemann surfaces or algebraic curves. |
You may like...
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Algebra, Geometry and Mathematical…
Abdenacer Makhlouf, Eugen Paal, …
Hardcover
R2,791
Discovery Miles 27 910
Harmonic Morphisms Between Riemannian…
Paul Baird, John C. Wood
Hardcover
R5,496
Discovery Miles 54 960
Offbeat Integral Geometry on Symmetric…
Valery V. Volchkov, Vitaly V. Volchkov
Hardcover
R2,759
Discovery Miles 27 590
Recent Trends in Lorentzian Geometry
Miguel Sanchez, Miguel Ortega, …
Hardcover
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
|