![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
These proceedings include selected and refereed original papers; most are research papers, a few are comprehensive survey articles.
Before his untimely death in 1986, Alain Durand had undertaken a systematic and in-depth study of the arithmetic perspectives of polynomials. Four unpublished articles of his, formed the centerpiece of attention at a colloquium in Paris in 1988 and are reproduced in this volume together with 11 other papers on closely related topics. A detailed introduction by M. Langevin sets the scene and places these articles in a unified perspective.
These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J.W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, .
The contributions making up this volume are expanded versions of the courses given at the C.I.M.E. Summer School on the Theory of Moduli.
These notes present very recent results on compact K hler-Einstein manifolds of positive scalar curvature. A central role is played here by a Lie algebra character of the complex Lie algebra consisting of all holomorphic vector fields, which can be intrinsically defined on any compact complex manifold and becomes an obstruction to the existence of a K hler-Einstein metric. Recent results concerning this character are collected here, dealing with its origin, generalizations, sufficiency for the existence of a K hler-Einstein metric and lifting to a group character. Other related topics such as extremal K hler metrics studied by Calabi and others and the existence results of Tian and Yau are also reviewed. As the rudiments of K hlerian geometry and Chern-Simons theory are presented in full detail, these notes are accessible to graduate students as well as to specialists of the subject.
A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.
The Taniguchi Symposium on global analysis on manifolds focused mainly on the relationships between some geometric structures of manifolds and analysis, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. TeichmA1/4ller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook and of a research monograph: it is the first introduction to the subject available in English, contains nearly a hundred exercises, a survey of the subject as well as an extensive bibliography and, finally, a list of open problems.
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
The focal topic of the 14th International Conference on Differential Geometric Methods was that of mathematical problems in classical field theory and the emphasis of the resulting proceedings volume is on superfield theory and related topics, and classical and quantized fields.
The Nordic Summer School 1985 presented to young researchers the mathematical aspects of the ongoing research stemming from the study of field theories in physics and the differential geometry of fibre bundles in mathematics. The volume includes papers, often with original lines of attack, on twistor methods for harmonic maps, the differential geometric aspects of Yang-Mills theory, complex differential geometry, metric differential geometry and partial differential equations in differential geometry. Most of the papers are of lasting value and provide a good introduction to their subject.
All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stable vector bundles over Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical connection for locally homogeneous Riemannian manifolds. -M.Kozlowski: Some improper affine spheres in A3. -R.Kusner: A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. -Anmin Li: Affine completeness and Euclidean completeness. -U.Lumiste: On submanifolds with parallel higher order fundamental form in Euclidean spaces. -A.Martinez, F.Milan: Convex affine surfaces with constant affine mean curvature. -M.Min-Oo, E.A.Ruh, P.Tondeur: Transversal curvature and tautness for Riemannian foliations. -S.Montiel, A.Ros: Schroedinger operators associated to a holomorphic map. -D.Motreanu: Generic existence of Morse functions on infinite dimensional Riemannian manifolds and applications. -B.Opozda: Some extensions of Radon's theorem.
15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV. |
![]() ![]() You may like...
The Conformal Structure of Space-Times…
Joerg Frauendiener, Helmut Friedrich
Hardcover
R3,099
Discovery Miles 30 990
Scalable Network Monitoring in High…
Baek-Young Choi, Zhi-Li Zhang, …
Hardcover
R1,521
Discovery Miles 15 210
Meshfree Methods for Partial…
Michael Griebel, Marc Alexander Schweitzer
Hardcover
Crossbar-Based Interconnection Networks…
Mohsen Jahanshahi, Fathollah Bistouni
Hardcover
R1,521
Discovery Miles 15 210
Human T Cell Clones - A New Approach to…
Marc Feldmann, Jonathan R. Lamb, …
Hardcover
R3,146
Discovery Miles 31 460
Autophagy Networks in Inflammation
Maria Chiara Maiuri, Daniel A deStefano
Hardcover
R5,124
Discovery Miles 51 240
|