![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations and delimits their supports. The contents of this book consist of many results accumulated in the last decade by the author and his collaborators, but also include classical results, such as the Newlander-Nirenberg theorem. The reader will find an elementary description of the FBI transform, as well as examples of its use. Treves extends the main approximation and uniqueness results to first-order nonlinear equations by means of the Hamiltonian lift. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The theory of D-modules deals with the algebraic aspects of differential equations. These are particularly interesting on homogeneous manifolds, since the infinitesimal action of a Lie algebra consists of differential operators. Hence, it is possible to attach geometric invariants, like the support and the characteristic variety, to representations of Lie groups. By considering D-modules on flag varieties, one obtains a simple classification of all irreducible admissible representations of reductive Lie groups. On the other hand, it is natural to study the representations realized by functions on pseudo-Riemannian symmetric spaces, i.e., spherical representations. The problem is then to describe the spherical representations among all irreducible ones, and to compute their multiplicities. This is the goal of this work, achieved fairly completely at least for the discrete series representations of reductive symmetric spaces. The book provides a general introduction to the theory of D-modules on flag varieties, and it describes spherical D-modules in terms of a cohomological formula. Using microlocalization of representations, the author derives a criterion for irreducibility. The relation between multiplicities and singularities is also discussed at length. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book 3 in the Princeton Mathematical Series. Originally published in 1950. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Der vorliegende Klassiker bietet Studierenden und Forschenden in den Gebieten der Theoretischen und Mathematischen Physik eine ideale Einfuhrung in die Differentialgeometrie und Topologie. Beides sind wichtige Werkzeuge in den Gebieten der Astrophysik, der Teilchen- und Festkoerperphysik. Das Buch fuhrt durch: - Pfadintegralmethode und Eichtheorie - Mathematische Grundlagen von Abbildungen, Vektorraumen und Topologie - Fortgeschrittene Konzepte der Geometrie und Topologie und deren Anwendungen im Bereich der Flussigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie - Eine Zusammenfuhrung von Geometrie und Topologie: Faserbundel, charakteristische Klassen und Indextheoreme - Anwendungen von Geometrie und Topologie in der modernen Physik: Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer geometrischen Perspektive
Bernhard Riemanns Werk hat bis heute wesentlichen Einfluss auf die Entwicklung der Mathematik genommen. Seine Ideen sind uberraschend modern und pragen die heutige mathematische Forschung. Die Gesammelten Abhandlungen (1892) samt Supplement von 1902 waren seit langer Zeit vergriffen. R. Narasimhan hat die muhevolle Edition dieser Neuausgabe ubernommen. Es koennen nur einige Hoehepunkte genannt werden: - H. Weils Kommentare uber Riemanns Habilitationsschrift - C.L. Siegel uber Riemanns Nachlass zur analytischen Zahlentheorie - W. Wirtingers beruhmter Vortrag beim internationalen Mathematikerkongress Heidelberg 1904 uber Riemanns Vorlesungen uber die hypergeometrische Reihe. Neben diesen historischen Wurdigungen von Riemanns Werk gibt es aktuelle Beitrage, insbesondere zur Mechanik und uber "shock waves" von S. Chandrasekhar, N. Lebovitz und P. Lax. Raghavan Narasimhan gibt in einer ausfuhrlichen Einleitung eine Wurdigung, insbesondere des funktionentheoretischen Werks von Bernhard Riemann. Ferner sind Fotos und zahlreiche Nachtrage zum Lebenslauf aufgenommen worden. Eine Bibliographie mit mehr als 800 Literaturstellen erarbeitet von E. Neuenschwander und W. Purkert rundet diese Werkausgabe ab.
Dieses Lehrbuch bietet eine Einfuhrung in die Differentialgeometrie auf Faserbundeln. Nach einem Kapitel uber Lie-Gruppen und homogene Raume werden lokal-triviale Faserungen, insbesondere die Hauptfaserbundel und zu ihnen assoziierte Vektorbundel, besprochen. Es folgen die grundlegenden Begriffe der Differentialrechnung auf Faserbundeln: Zusammenhang, Krummung, Parallelverschiebung und kovariante Ableitung. Anschliessend werden die Holonomiegruppen vorgestellt, die zentrale Bedeutung in der Differentialgeometrie haben. Als Anwendungen werden charakteristische Klassen und die Yang-Mills-Gleichung behandelt. Zahlreiche Aufgaben mit Loesungshinweisen helfen, das Gelernte zu vertiefen. Das Buch richtet sich vor allem an Studenten der Mathematik und Physik im Masterstudium. Es stellt mathematische Grundlagen bereit, die in Vorlesungen zur Eichfeldtheorie in der theoretischen und mathematischen Physik Anwendung finden.
Das vorliegende Lehrbuch bietet eine moderne Einfuhrung in die Differenzialgeometrie - etwa im Umfang einer einsemestrigen Vorlesung. Zunachst behandelt es die Geometrie von Flachen im Raum. Viele Beispiele schulen Leser in geometrischer Anschauung, deren wichtigste Klasse die Minimalflachen bilden. Zu ihrem Studium entwickeln die Autoren analytische Methoden und loesen in diesem Zusammenhang das Plateausche Problem. Es besteht darin, eine Minimalflache mit vorgegebener Berandung zu finden. Als Beispiel einer globalen Aussage der Differenzialgeometrie beweisen sie den Bernsteinschen Satz. Weitere Kapitel behandeln die innere Geometrie von Flachen einschliesslich des Satzes von Gauss-Bonnet, und stellen die hyperbolische Geometrie ausfuhrlich dar. Die Autoren verknupfen geometrische Konstruktionen und analytische Methoden und folgen damit einem zentralen Trend der modernen mathematischen Forschung. Verschiedene geistesgeschichtliche Bemerkungen runden den Text ab. Die Neuauflage wurde uberarbeitet und aktualisiert. Hinweise und Errata auf Webseite des Autors: https://myweb.rz.uni-augsburg.de/~eschenbu/
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zuruckprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Randern? Anhand dieser und ahnlicher Fragen stellt das vorliegende Buch Zusammenhange zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschaftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus fur Chaos bei der Billarddynamik. Erganzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbogen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schliessungssatz von Poncelet.
Bei der Herausgabe dieses Buches mochte ich an dieser Stelle Herrn L. Berwald in Prag, Herrn D. J. Struik in Delft und Herrn R. Weitzenbock in Blaricum, die mich. durch das Mitlesen der Korrek turen sowie durch viele wichtige Bemerkungen aufs wirksamste unter stutzt haben, meinen verbindlichsten Dank aussprechen. Einen freundschaftlichen Gruss dem mathematischen Kreise in Hamburg, wo es mir vergonnt war, im Sommersemester dieses Jahres uber die mehrdimensionale Affingeometrie zu lesen. Manche anregende Bemerkung zum vierten Abschnitt brachte mir diese schone Zeit, die mir immer in freudiger Erinnerung bleiben wird. Der Verlagsbuchhandlung Julius Springer meinen besonderen Dank fur die sorgfaltige Behandlung der Korrekturen, "die mir die sauere Arbeit des Korrigierens fast zu einer Freude machte. Delft, im Dezember 1923. J. A. Schouten. Inhaltsverzeichnis. Seite Einleitung . . . 1 1. Der algebraische Teil des Kalkuls. 1. Die allgemeine Mannigfaltigkeit X" . . 8 2. Der Begriff der ubertragung . . . . . 9 3. Die euklidisch affine Mannigfaltigkeit E" . 9 4. Kontravariante und kovariante Vektoren. 12 5. Kontravariante und kovariante Bivektoren, Trivektoren usw. 17 6. Geometrische Darstellung kontravarianter und kovarianter p-Vektoren bei Einschrankung der Gruppe 20 7. Allgemeine Grossen . . . . ." . . . . 23 8. Die uberschiebungen . . . . . . . . . 28 9. Geometrische Darstellung der Tensoren 32 10. Grossen zweiten Grades und lineare Transformationen 33 11. Die Einfuhrung einer Massbestimmung in der E.. . . 36 12. Die Fundamentaltensoren . . . . . . . . . . . . 38 13. Geometrische Darstellung alternierender Grossen bei der orthogonalen und rotationalen. Gruppe. Metrische Eigenschaften . . . . . . . 41 ."
Providing a succinct yet comprehensive treatment of the essentials of modern differential geometry and topology, this book's clear prose and informal style make it accessible to advanced undergraduate and graduate students in mathematics and the physical sciences. The text covers the basics of multilinear algebra, differentiation and integration on manifolds, Lie groups and Lie algebras, homotopy and de Rham cohomology, homology, vector bundles, Riemannian and pseudo-Riemannian geometry, and degree theory. It also features over 250 detailed exercises, and a variety of applications revealing fundamental connections to classical mechanics, electromagnetism (including circuit theory), general relativity and gauge theory. Solutions to the problems are available for instructors at www.cambridge.org/9781107042193.
This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors' companion volume Differential Geometry and Lie Groups: A Second Course.
Students will find all the information covered in the standard textbooks--and more--explained clearly and concisely in this powerful study tool. Unusually detailed, it elucidates all the most difficult-to-grasp concepts that class studies and texts sometimes gloss over. The hundreds of problems with fully explained solutions illuminate important points and teach students sound problem-solving skills. Ideal, also, for independent study.
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Ganz in Hermann Weyls bekannt klarer Darstellung geschrieben, gibt dieser Beitrag einen Bericht uber die Entstehung der grundlegenden Ideen, die der modernen Geometrie zugrunde liegen. Diese Schrift spiegelt in einzigartiger Weise Weyls mathematische Personlichkeit wider. Sie richtet sich an alle, die sich mit Fragen der Topologiegruppentheorie, Differentialgeometrie und mathematischer Physik beschaftigen. From the foreword of the editor K. Chandrasekharan: "Written in Weyl's finest style, while he was rising forty, the article is an authentic report on the genesis and evolution of those fundamental ideas that underlie the modern conception of geometry. Part I is on the continuum, and deals with analysis situs, imbeddings, and coverings. Part II is on structure, and deals with infinitesimal geometry in its many aspects, metric, conformal, affine, and projective; with the question of homogeneity, homogeneous spaces from the group-theoretical standpoint, the role of the metric field theories in physics, and the related problems of group theory. It is hoped that this article will be of interest to all those concerned with the growth and development of topology, group theory, differential geometry, geometric function theory, and mathematical physics. It bears the unmistakable imprint of Weyl's mathematical personality, and of his remarkable capacity to capture and delineate the transmutation of some of the nascent into the dominant ideas of the mathematics of our time".
Das Buch fuhrt in die Bereiche der Kontinuumstheorie ein, die fur Ingenieure relevant sind: die Deformation des elastischen und des plastifizierenden Festkorpers, die Stromung reibungsfreier und reibungsbehafteter Fluide sowie die Elektrodynamik. Der Autor baut die Theorie im Sinne der rationalen Mechanik auf, d.h., er erstellt ein Feldgleichungssystem und gibt sozusagen nebenbei eine Einfuhrung in die Tensoranalysis. Dabei werden sowohl der Indexkalkul als auch die absolute Schreibweise verwendet und gegenubergestellt.
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
Noncommutative geometry combines themes from algebra, analysis and geometry and has significant applications to physics. This book focuses on cyclic theory, and is based upon the lecture courses by Daniel G. Quillen at the University of Oxford from 1988-92, which developed his own approach to the subject. The basic definitions, examples and exercises provided here allow non-specialists and students with a background in elementary functional analysis, commutative algebra and differential geometry to get to grips with the subject. Quillen's development of cyclic theory emphasizes analogies between commutative and noncommutative theories, in which he reinterpreted classical results of Hamiltonian mechanics, operator algebras and differential graded algebras into a new formalism. In this book, cyclic theory is developed from motivating examples and background towards general results. Themes covered are relevant to current research, including homomorphisms modulo powers of ideals, traces on noncommutative differential forms, quasi-free algebras and Chern characters on connections.
Anschauliche Geometrie - wohl selten ist ein Mathematikbuch seinem Titel so gerecht geworden wie dieses aussergewohnliche Werk von Hilbert und Cohn-Vossen. Zuerst 1932 erschienen, hat das Buch nichts von seiner Frische und Kraft verloren. Hilbert hat sein erklartes Ziel, die Faszination der Geometrie zu vermitteln, bei Generationen von Mathematikern erreicht. Aus Hilberts Vorwort: "Das Buch soll dazu dienen, die Freude an der Mathematik zu mehren, indem es dem Leser erleichtert, in das Wesen der Mathematik einzudringen, ohne sich einem beschwerlichen Studium zu unterziehen.""
lOsung von Singularitiiten, Liesche Gruppen, Newton-Diagramme) einerseits und den naturwissenschaftlichen Anwendungen andererseits. Die Theorie der partiellen Differentialgleichungen erster Ordnung wird mit Hilfe der natiirlichen Kontaktstruktur in der Mannigfaltigkeit der l-Jets von Funktionen untersucht. Nebenbei werden dabei die notwendigen Elemente der Geometrie der Kontaktstruktur dargelegt, die die ganze Theorie unabhiingig von anderen Quellen machen. Einen entscheidenden Teil des Buches nehmen die gewohnlich qualitativ genann- ten Methoden ein. Die jiingste Entwicklung der von H. POINCARE begriindeten quali- tativen Theorie der Differentialgleichungen flihrte zum Verstiindnis dessen, daB genauso, wie einzelne Differentialgleichungen im allgemeinen nicht vollstiindig inte- grierbar sind, auch die qualitative Untersuchung gewisser allgemeiner Differential- gleichungen mit mehrdimensionalem Phasenraum unmoglich ist. In diesem Zusam- menhang wird die Analyse einer Differentialgleichung vom Standpunkt der Struktur- stabilitiit; d. h. der Stabilitiit des qualitativen Bildes in Hinsicht auf kleine . Anderun- gen der Differentialgleichung, im Kapitel 3 behandelt. Es werden die Hauptresul- tate, die nach den ersten Arbeiten von A. A. ANDRONOV und L. S. PONTRJAGIN er- zielt wurden, dargestellt: die Grundlagen der Theorie der strukturstabilen Anosov- Systeme, deren Trajektorien alle exponentiell instabil sind, und der Satz von SMALE iiber die Nichtdichtheit der Menge der strukturstabilen Systeme. Es wird dann weiter die Bedeutung dieser mathematischen Entdeckungen flir die Anwendungen diskutiert (die Rede ist dabei von der Beschreibung stabiler chaotischer Bewe- glmgsregimes, beispielweise Turbulenzen). Zu den stiirksten und am meisten verwendeten Methoden der Untersuchung von Differentialgleichungen gehoren verschiedene asymptotische Methoden.
I. Bucur: L'anneau de Chow d'une variete algebrique.- E. Eckmann: Cohomologie et classes caracteristiques.- C. Teleman: Sur le caractere de Chern d'un fibre vectoriel complexe differentiable.- E. Thomas: Characteristic classes and differentiable manifolds.- A. Van de Ven: Chern classes and complex manifolds."
Exact solutions to Einstein 's equations have been useful for the understanding of general relativity in many respects. They have led to such physical concepts as black holes and event horizons, and helped to visualize interesting features of the theory. This volume studies the solutions to the Ernst equation associated to Riemann surfaces in detail. In addition, the book discusses the physical and mathematical aspects of this class analytically as well as numerically.
In all geosciences extensive data must be processed and visualized. To achieve this, well-founded basic knowledge of numerics and geometry is needed. For random objects and structures, basic knowledge of stochastic geometry is also required. This book provides an overview of the knowledge needed to work with real geodata.
The principle aim of this unique text is to illuminate the beauty of the subject both with abstractions like proofs and mathematical text, and with visuals, such as abundant illustrations and diagrams. With few mathematical prerequisites, geometry is presented through the lens of linear fractional transformations. The exposition is motivational and the well-placed examples and exercises give students ample opportunity to pause and digest the material. The subject builds from the fundamentals of Euclidean geometry, to inversive geometry, and, finally, to hyperbolic geometry at the end. Throughout, the author aims to express the underlying philosophy behind the definitions and mathematical reasoning. This text may be used as primary for an undergraduate geometry course or a freshman seminar in geometry, or as supplemental to instructors in their undergraduate courses in complex analysis, algebra, and number theory. There are elective courses that bring together seemingly disparate topics and this text would be a welcome accompaniment. |
![]() ![]() You may like...
Food Waste Reduction and Valorisation…
Piergiuseppe Morone, Franka Papendiek, …
Hardcover
R5,370
Discovery Miles 53 700
Deconstructing Health Inequity - A…
Timothy A. Carey, Sara J Tai, …
Hardcover
R1,890
Discovery Miles 18 900
Triangulated Categories of Mixed Motives
Denis-Charles Cisinski, Frederic Deglise
Hardcover
R3,440
Discovery Miles 34 400
Electric Toy Making for Amateurs. This…
T. O'Conor (Thomas O'Conor) Sloane
Hardcover
R901
Discovery Miles 9 010
|