![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.
First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.
Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This 2006 textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
This 1989 monograph deals with parametric minimal surfaces in Euclidean space. The author presents a broad survey which extends from the classical beginnings to the current situation whilst highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks. The presentation is complete and is complemented by a bibliography of nearly 1600 references. The careful expository style and emphasis on geometric aspects are extremely valuable. Moreover, in the years leading up to the publication of this book, the theory of minimal surfaces was finding increasing application to other areas of mathematics and the physical sciences ensuring that this account will appeal to non-specialists as well.
This book covers numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. It presents a theory of symplectic and symmetric methods, which include various specially designed integrators, as well as discusses their construction and practical merits. The long-time behavior of the numerical solutions is studied using a backward error analysis combined with KAM theory.
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. Each article will open the door to an active area of research, and is suitable for a special topics course in graduate-level differential geometry. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.
Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications.
Riemann surfaces is a thriving area of mathematics with applications to hyperbolic geometry, complex analysis, fractal geometry, conformal dynamics, discrete groups, geometric group theory, algebraic curves and their moduli, various kinds of deformation theory, coding, thermodynamic formalism, and topology of three-dimensional manifolds. This collection of articles, authored by leading authorities in the field, comprises 16 expository essays presenting original research and expert surveys of important topics related to Riemann surfaces and their geometry. It complements the body of recorded research presented in the primary literature by broadening, re-working and extending it in a more focused and less formal framework, and provides a valuable commentary on contemporary work in the subject. An introductory section sets the scene and provides sufficient background to allow graduate students and research workers from other related areas access to the field.
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics. The subject of this book is the multiplicity diagrams associated with the classical groups U(n), O(n), etc. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank 2 and rank 3 groups. The authors take a novel approach, using the techniques of symplectic geometry. The book develops in detail some themes which were touched on in the highly successful Symplectic Techniques in Physics by V. Guillemin and S. Sternberg (CUP, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization. Students and researchers in geometry and mathematical physics will find this book fascinating.
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3-5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations.
The purpose of this book is to bridge the gap between differential geometry of Euclidean space of three dimensions and the more advanced work on differential geometry of generalised space. The subject is treated with the aid of the Tensor Calculus, which is associated with the names of Ricci and Levi-Civita; and the book provides an introduction both to this calculus and to Riemannian geometry. The geometry of subspaces has been considerably simplified by use of the generalized covariant differentiation introduced by Mayer in 1930, and successfully applied by other mathematicians.
The basics of differentiable manifolds, global calculus, differential geometry, and related topics constitute a core of information essential for the first or second year graduate student preparing for advanced courses and seminars in differential topology and geometry. Differentiable Manifolds is a text designed to cover this material in a careful and sufficiently detailed manner, presupposing only a good foundation in general topology, calculus, and modern algebra. This second edition contains a significant amount of new material, which, in addition to classroom use, will make it a useful reference text. Topics that can be omitted safely in a first course are clearly marked, making this edition easier to use for such a course, as well as for private study by non-specialists.
This book documents the focus on a branch of Riemannian geometry called Comparison Geometry. The simple idea of comparing the geometry of an arbitrary Riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution of late. This volume is an up-to-date reflection of the recent development regarding spaces with lower (or two-sided) curvature bounds. The content of the volume reflects some of the most exciting activities in comparison geometry during the year and especially of the Mathematical Sciences Research Institute's workshop devoted to the subject. Both survey and research articles are featured. Complete proofs are often provided, and in one case a new unified strategy is presented and new proofs are offered. This volume will be a valuable source for advanced researchers and those who wish to learn about and contribute to this beautiful subject.
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text covers symplectomorphisms, local forms, contact manifold, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moments maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster.
Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topological methods and also for geometers who are faced with problems requiring topological approaches and thus need a simple and concrete introduction to rational homotopy. This is essentially a book of applications. Geodesics, curvature, embeddings of manifolds, blow-ups, complex and Kahler manifolds, symplectic geometry, torus actions, configurations and arrangements are all covered. The chapters related to these subjects act as an introduction to the topic, a survey, and a guide to the literature. But no matter what the particular subject is, the central theme of the book persists; namely, there is a beautiful connection between geometry and rational homotopy which both serves to solve geometric problems and spur the development of topological methods.
This self-contained 2007 textbook presents an exposition of the well-known classical two-dimensional geometries, such as Euclidean, spherical, hyperbolic, and the locally Euclidean torus, and introduces the basic concepts of Euler numbers for topological triangulations, and Riemannian metrics. The careful discussion of these classical examples provides students with an introduction to the more general theory of curved spaces developed later in the book, as represented by embedded surfaces in Euclidean 3-space, and their generalization to abstract surfaces equipped with Riemannian metrics. Themes running throughout include those of geodesic curves, polygonal approximations to triangulations, Gaussian curvature, and the link to topology provided by the Gauss-Bonnet theorem. Numerous diagrams help bring the key points to life and helpful examples and exercises are included to aid understanding. Throughout the emphasis is placed on explicit proofs, making this text ideal for any student with a basic background in analysis and algebra.
Kahler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained 2007 graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kahler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kahler identities. The final part of the text studies several aspects of compact Kahler manifolds: the Calabi conjecture, Weitzenbock techniques, Calabi Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory."
This graduate level text covers an exciting and active area of research at the crossroads of several different fields in Mathematics and Physics. In Mathematics it involves Differential Geometry, Complex Algebraic Geometry, Symplectic Geometry, and in Physics String Theory and Mirror Symmetry. Drawing extensively on the author's previous work, the text explains the advanced mathematics involved simply and clearly to both mathematicians and physicists. Starting with the basic geometry of connections, curvature, complex and Kahler structures suitable for beginning graduate students, the text covers seminal results such as Yau's proof of the Calabi Conjecture, and takes the reader all the way to the frontiers of current research in calibrated geometry, giving many open problems.
Hamilton's Ricci flow has attracted considerable attention since its introduction in 1982, owing partly to its promise in addressing the Poincare conjecture and Thurston's geometrization conjecture. This book gives a concise introduction to the subject with the hindsight of Perelman's breakthroughs from 2002/2003. After describing the basic properties of, and intuition behind the Ricci flow, core elements of the theory are discussed such as consequences of various forms of maximum principle, issues related to existence theory, and basic properties of singularities in the flow. A detailed exposition of Perelman's entropy functionals is combined with a description of Cheeger-Gromov-Hamilton compactness of manifolds and flows to show how a 'tangent' flow can be extracted from a singular Ricci flow. Finally, all these threads are pulled together to give a modern proof of Hamilton's theorem that a closed three-dimensional manifold which carries a metric of positive Ricci curvature is a spherical space form.
Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This 2006 textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
Synthetic Differential Geometry is a method of reasoning in differential geometry and differential calculus, based on the assumption of sufficiently many nilpotent elements on the number line, in particular numbers d such that d2=0. The use of nilpotent elements allows one to replace the limit processes of calculus by purely algebraic calculations and notions. For the first half of the book, first published in 2006, familiarity with differential calculus and abstract algebra is presupposed during the development of results in calculus and differential geometry on a purely axiomatic/synthetic basis. In the second half basic notions of category theory are presumed in the construction of suitable Cartesian closed categories and the interpretation of logical formulae within them. This is a second edition of Kock's classical text from 1981. Many notes have been included, with comments on developments in the field from the intermediate years, and almost 100 new bibliographic entries have been added.
0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets."
This introduction to the conformal differential geometry of surfaces and submanifolds covers those aspects of the geometry of surfaces that only refer to an angle measurement, but not to a length measurement. Different methods (models) are presented for analysis and computation. Various applications to areas of current research are discussed, including discrete net theory and certain relations between differential geometry and integrable systems theory. |
![]() ![]() You may like...
A Perspective on Canonical Riemannian…
Giovanni Catino, Paolo Mastrolia
Hardcover
R3,388
Discovery Miles 33 880
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev
Hardcover
One Hundred Years of Gauge Theory…
Silvia De Bianchi, Claus Kiefer
Hardcover
R3,159
Discovery Miles 31 590
Lectures on Poisson Geometry
Marius Crainic, Rui Loja Fernandes, …
Paperback
R2,269
Discovery Miles 22 690
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R3,102
Discovery Miles 31 020
|