![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Singularity theory is a broad subject with vague boundaries. It draws on many other areas of mathematics, and in turn has contributed to many areas both within and outside mathematics, in particular differential and algebraic geometry, knot theory, differential equations, bifurcation theory, Hamiltonian mechanics, optics, robotics and computer vision. This volume consists of two dozen articles from some of the best known figures in singularity theory, and it presents an up-to-date survey of research in this area.
Here is an introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book is well illustrated and contains several hundred worked examples and exercises. From the familiar lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, while the ideas of linear systems are used to discuss the classical group structure on the cubic.
Here is an introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book is well illustrated and contains several hundred worked examples and exercises. From the familiar lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, while the ideas of linear systems are used to discuss the classical group structure on the cubic.
The description for this book, Seminar On Minimal Submanifolds. (AM-103), will be forthcoming.
This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This will be an excellent resource for all researchers whose interests lie in singularity theory, and algebraic or differential geometry.
Tight and taut manifolds form an important and special class of surfaces within differential geometry. This book contains in-depth articles by experts in the field as well as an extensive and comprehensive bibliography. This survey will open new avenues for further research and will be an important addition to any geometer's library.
This book documents the recent focus on a branch of Riemannian geometry called Comparison Geometry. The simple idea of comparing the geometry of an arbitrary Riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution recently. This volume is an up-to-date reflection of the recent development regarding spaces with lower (or two-sided) curvature bounds. The content reflects some of the most exciting activities in comparison geometry during the year and especially of the Mathematical Sciences Research Institute's workshop devoted to the subject. This volume features both survey and research articles. It also provides complete proofs: in one case, a new, unified strategy is presented and new proofs are offered. This volume will be a valuable source for advanced researchers and those who wish to learn about and contribute to this beautiful subject.
This text on analysis on Riemannian manifolds is a thorough introduction to topics covered in advanced research monographs on Atiyah-Singer index theory. The main theme is the study of heat flow associated to the Laplacians on differential forms. This provides a unified treatment of Hodge theory and the supersymmetric proof of the Chern-Gauss-Bonnet theorem. In particular, there is a careful treatment of the heat kernel for the Laplacian on functions. The author develops the Atiyah-Singer index theorem and its applications (without complete proofs) via the heat equation method. Rosenberg also treats zeta functions for Laplacians and analytic torsion, and lays out the recently uncovered relation between index theory and analytic torsion. The text is aimed at students who have had a first course in differentiable manifolds, and the author develops the Riemannian geometry used from the beginning. There are over 100 exercises with hints.
This text on analysis on Riemannian manifolds is a thorough introduction to topics covered in advanced research monographs on Atiyah-Singer index theory. The main theme is the study of heat flow associated to the Laplacians on differential forms. This provides a unified treatment of Hodge theory and the supersymmetric proof of the Chern-Gauss-Bonnet theorem. In particular, there is a careful treatment of the heat kernel for the Laplacian on functions. The author develops the Atiyah-Singer index theorem and its applications (without complete proofs) via the heat equation method. Rosenberg also treats zeta functions for Laplacians and analytic torsion, and lays out the recently uncovered relation between index theory and analytic torsion. The text is aimed at students who have had a first course in differentiable manifolds, and the author develops the Riemannian geometry used from the beginning. There are over 100 exercises with hints.
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H. The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization. Students and researchers in geometry and mathematical physics will find this book fascinating.
This volume presents some of the lectures and research during the special programme held at the Newton Institute in 1994. The book, in two parts, begins with an introductory overview. The two parts each contain a mix of substantial expository articles and research papers that outline important and topical ideas. Many of the results have not been presented before. Symplectic methods are one of the most active areas of research in mathematics currently, and this volume will attract much attention.
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established in recent years by many mathematicians. This text presents some of these modern techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application, for the first time in book form, to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the book's original ideas should make it appeal to researchers in mechanics and algebraic geometry as well.
Riemannian Geometry includes results discovered during the last few years, which have previously only been available through research papers. It contains an elementary account of twistor spaces, of interest to applied mathematicians and physicists, and the final chapter gives the only account available in book form of Willmore surfaces (illustrated by a series of computer-generated pictures).
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications, avoiding all unnecessary technicalities. The author takes an algebraic approach, concentrating on the role of the Weyl algebra. The author assumes very few prerequisites, and the book is virtually self-contained. The author includes exercises at the end of each chapter and gives the reader ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications, avoiding all unnecessary technicalities. The author takes an algebraic approach, concentrating on the role of the Weyl algebra. The author assumes very few prerequisites, and the book is virtually self-contained. The author includes exercises at the end of each chapter and gives the reader ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics which has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics.
This is a self-contained and systematic account of affine differential geometry from a contemporary view, not only covering the classical theory, but also introducing more modern developments. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry to the subject.
Singularity theory encompasses many different aspects of geometry and topology, and an overview of these is represented here by papers given at the International Singularity Conference held in 1991 at Lille. The conference attracted researchers from a wide variety of subject areas, including differential and algebraic geometry, topology, and mathematical physics. Some of the best known figures in their fields participated, and their papers have been collected here. Contributors to this volume include G. Barthel, J. W. Bruce, F. Delgado, M. Ferrarotti, G. M. Greuel, J. P. Henry, L. Kaup, B. Lichtin, B. Malgrange, M. Merle, D. Mond, L. Narvaez, V. Neto, A. A. Du Plessis, R. Thom and M. Vaquie. Research workers in singularity theory or related subjects will find that this book contains a wealth of valuable information on all aspects of the subject.
Twistor theory has become a diverse subject as it has spread from its origins in theoretical physics to applications in pure mathematics. This 1990 collection of review articles covers the considerable progress made in a wide range of applications such as relativity, integrable systems, differential and integral geometry and representation theory. The articles explore the wealth of geometric ideas which provide the unifying themes in twistor theory, from Penrose's quasi-local mass construction in relativity, to the study of conformally invariant differential operators, using techniques of representation theory.
Naber provides an elementary introduction to the geometrical methods and notions used in special and general relativity. Particular emphasis is placed on the ideas concerned with the structure of space-time and that play a role in the Penrose-Hawking singularity theorems. The author's primary purpose is to give a rigorous proof of the simplest of these theorems, by the one that is representative of the whole. He provides exercises and examples at the end of each chapter. No previous exposure either to relativity theory of differential geometry is required of the reader, as necessary concepts are developed when needed, though some restrictions ae imposed on the types of space considered.
In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry.
This is an introduction to geometrical topics that are useful in applied mathematics and theoretical physics, including manifolds, metrics, connections, Lie groups, spinors and bundles, preparing readers for the study of modern treatments of mechanics, gauge fields theories, relativity and gravitation. The order of presentation corresponds to that used for the relevant material in theoretical physics: the geometry of affine spaces, which is appropriate to special relativity theory, as well as to Newtonian mechanics, is developed in the first half of the book, and the geometry of manifolds, which is needed for general relativity and gauge field theory, in the second half. Analysis is included not for its own sake, but only where it illuminates geometrical ideas. The style is informal and clear yet rigorous; each chapter ends with a summary of important concepts and results. In addition there are over 650 exercises, making this a book which is valuable as a text for advanced undergraduate and postgraduate students.
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.
An introductory textbook on the differential geometry of curves and surfaces in three-dimensional Euclidean space, presented in its simplest, most essential form, but with many explanatory details, figures and examples, and in a manner that conveys the theoretical and practical importance of the different concepts, methods and results involved. With problems at the end of each section, and solutions listed at the end of the book. 99 illustrations. |
You may like...
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, …
Hardcover
Geometric Complex Analysis - In Honor of…
Jisoo Byun, Hong Rae Cho, …
Hardcover
R4,061
Discovery Miles 40 610
Hermitian-Grassmannian Submanifolds…
Young Jin Suh, Yoshihiro Ohnita, …
Hardcover
R4,769
Discovery Miles 47 690
Innovative Algorithms and Analysis
Laurent Gosse, Roberto Natalini
Hardcover
R3,802
Discovery Miles 38 020
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev
Hardcover
|