![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
Comprehensive coverage of the foundations, applications, recent
developments, and future of conformal differential geometry
The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Frechet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C DEGREES\infinity-rings and C DEGREES\infinity-schemes, as well as in the framework of Spallek's C DEGREES\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Frechet spaces."
This volume collects the papers accepted for presentation at the 10th IMA C- ference on the Mathematics of Surfaces, held at the University of Leeds, UK, September 15-17, 2003. As with all earlier conferences in the series, contributors to this volume come from a wide variety of countries in Asia, Europe and North America. The papers presented here re?ect the continued relevance of the s- ject, and, by comparison with the contents of earlier volumes in the series, the changing nature of application areas and mathematical techniques. To give the casual browser of these proceedings an idea of the diversity of the subject area, the papers in the present volume cover such topics and techniques as digital geometry processing, computer graphics, surface topology, medical applications, subdivision surfaces, surface reconstruction, surface triangulation, waterma- ing, data compression, data smoothing, human-computer interaction, extracting shapeformshading,surfaceheightrecovery,reverseengineering,box-splines,the Plateau Problem, splines (a variety of papers), trans?nite blending, and a?ne arithmetic. There is also a paper in memory of the late Prof. Josef Hoschek of theTechnischeUniversit. atDarmstadt,co-authoredbyaformerresearchstudent, Prof. Bert Juttler, .. on the subject of using line congruences for parameterizing special algebraic surfaces. We would like to thank all those who attended the conference and helped to makeitasuccess. Inparticularwethankthosewhocontributedtotheseproce- ings.
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C DEGREES*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C DEGREES*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
These notes deal with deformation theory of complex analytic singularities and related objects. The first part treats general theory. The central notion is that of versal deformationin several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations. The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern. Examples are spread throughout the text.
Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.
This book is an expanded version of lectures given at a summer school on symplectic geometry in Nordfjordeid, Norway, in June 2001. The unifying feature of the book is an emphasis on Calabi-Yau manifolds. The first part discusses holonomy groups and calibrated submanifolds, focusing on special Lagrangian submanifolds and the SYZ conjecture. The second studies Calabi-Yau manifolds and mirror symmetry, using algebraic geometry. The final part describes compact hyperkahler manifolds, which have a geometric structure very closely related to Calabi-Yau manifolds. The book is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory and intended as an introductory text, requiring only limited background knowledge. Proofs or sketches are given for many important results. Moreover, exercises are provided.
Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (u) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. AEFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmüller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmüller spaces.
The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-free and the terminology is that of modern differential geometry. Known results toward the complete proof of Riemannian Osserman conjecture are given and the Osserman conjecture in Lorentzian geometry is proved completely. Counterexamples to the Osserman conjuncture in generic semi-Riemannian signature are provided and properties of semi-Riemannian Osserman manifolds are investigated.
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bäcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kahler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
There has been fundamental progress in complex differential geometry in the last two decades. For one, The uniformization theory of canonical K hler metrics has been established in higher dimensions, and many applications have been found, including the use of Calabi-Yau spaces in superstring theory. This monograph gives an introduction to the theory of canonical K hler metrics on complex manifolds. It also presents some advanced topics not easily found elsewhere.
Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.
This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces.The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.
The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.
This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.
Here is an introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book is well illustrated and contains several hundred worked examples and exercises. From the familiar lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, while the ideas of linear systems are used to discuss the classical group structure on the cubic.
From the reviews:
Starting from basic knowledge of nilpotent (Lie) groups, an algebraic theory of almost-Bieberbach groups, the fundamental groups of infra-nilmanifolds, is developed. These are a natural generalization of the well known Bieberbach groups and many results about ordinary Bieberbach groups turn out to generalize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
This introductory book is organized around a collection of simple experiments which the reader can perform at home or in a classroom setting. Methods for physically exploring the intrinsic geometry of commonplace curved objects (such as bowls, balls and watermelons) are described. The concepts of Gaussian curvature, parallel transport, and geodesics are treated.
Several books deal with Sobolev spaces on open subsets of R (n),
but none yet with Sobolev spaces on Riemannian manifolds, despite
the fact that the theory of Sobolev spaces on Riemannian manifolds
already goes back about 20 years. The book of Emmanuel Hebey will
fill this gap, and become a necessary reading for all using Sobolev
spaces on Riemannian manifolds.
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level. |
![]() ![]() You may like...
Extrinsic Geometry of Foliations
Vladimir Rovenski, Pawel Walczak
Hardcover
R3,407
Discovery Miles 34 070
One Hundred Years of Gauge Theory…
Silvia De Bianchi, Claus Kiefer
Hardcover
R3,159
Discovery Miles 31 590
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,191
Discovery Miles 11 910
Operator Theory and Differential…
Anatoly G. Kusraev, Zhanna D. Totieva
Hardcover
R2,921
Discovery Miles 29 210
Lectures on Poisson Geometry
Marius Crainic, Rui Loja Fernandes, …
Paperback
R2,269
Discovery Miles 22 690
A Perspective on Canonical Riemannian…
Giovanni Catino, Paolo Mastrolia
Hardcover
R3,388
Discovery Miles 33 880
Drop Heating and Evaporation: Analytical…
Gianpietro Elvio Cossali, Simona Tonini
Hardcover
R2,938
Discovery Miles 29 380
|