![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
The most immediate one-dimensional variation problem is certainly the problem of determining an arc of curve, bounded by two given and having a smallest possible length. The problem of deter points mining and investigating a surface with given boundary and with a smallest possible area might then be considered as the most immediate two-dimensional variation problem. The classical work, concerned with the latter problem, is summed up in a beautiful and enthusiastic manner in DARBOUX'S Theorie generale des surfaces, vol. I, and in the first volume of the collected papers of H. A. SCHWARZ. The purpose of the present report is to give a picture of the progress achieved in this problem during the period beginning with the Thesis of LEBESGUE (1902). Our problem has always been considered as the outstanding example for the application of Analysis and Geometry to each other, and the recent work in the problem will certainly strengthen this opinion. It seems, in particular, that this recent work will be a source of inspiration to the Analyst interested in Calculus of Variations and to the Geometer interested in the theory of the area and in the theory of the conformal maps of general surfaces. These aspects of the subject will be especially emphasized in this report. The report consists of six Chapters. The first three Chapters are important tools or concerned with investigations which yielded either important ideas for the proofs of the existence theorems reviewed in the last three Chapters."
The present volume gives a systematic treatment of potential functions. It takes its origin in two courses, one elementary and one advanced, which the author has given at intervals during the last ten years, and has a two-fold purpose: first, to serve as an introduction for students whose attainments in the Calculus include some knowledge of partial derivatives and multiple and line integrals; and secondly, to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications, or to the periodical literature of the day. It is inherent in the nature of the subject that physical intuition and illustration be appealed to freely, and this has been done. However, in order that the book may present sound ideals to the student, and also serve the mathematician, both for purposes of reference and as a basis for further developments, the proofs have been given by rigorous methods. This has led, at a number of points, to results either not found elsewhere, or not readily accessible. Thus, Chapter IV contains a proof for the general regular region of the divergence theorem (Gauss', or Green's theorem) on the reduction of volume to surface integrals. The treatment of the fundamental existence theorems in Chapter XI by means of integral equations meets squarely the difficulties incident to the discontinuity of the kernel, and the same chapter gives an account of the most recent developments with respect to the Dirichlet problem.
This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.
This book consists of contributions from the participants of the Abel Symposium 2019 held in Alesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Cet ouvrage traite de la transformation fondamentale survenue dans la pensee mathematique a la suite de la decouverte de la geometrie non euclidienne. Cette transformation a eu comme consequence celle d'admettre que, non seulement pouvaient exister plusieurs geometries, mais encore plusieurs espaces mathematiques et plusieurs espaces physiques differents. La recherche s'attache en grande partie a analyser les etapes qui ont conduit a cette nouvelle conception et aux idees mathematiques qui en sont le fondement. Le livre cherche egalement a en elucider la signification epistemologique et a mettre en evidence la nature et le role de l'espace dans la constitution de certaines theories mathematiques et dans la recherche des principes essentiels de la physique.
This volume collects lecture notes from courses offered at
several conferences and workshops, and provides the first
exposition in book form of the basic theory of the Kahler-Ricci
flow and its current state-of-the-art. While several excellent
books on Kahler-Einstein geometry are available, there have been no
such works on the Kahler-Ricci flow. The book will serve as a
valuable resource for graduate students and researchers in complex
differential geometry, complex algebraic geometry and Riemannian
geometry, and will hopefully foster further developments in this
fascinating area of research.
While Eugenio Calabi is best known for his contributions to the theory of Calabi-Yau manifolds, this Steele-Prize-winning geometer's fundamental contributions to mathematics have been far broader and more diverse than might be guessed from this one aspect of his work. His works have deep influence and lasting impact in global differential geometry, mathematical physics and beyond. By bringing together 47 of Calabi's important articles in a single volume, this book provides a comprehensive overview of his mathematical oeuvre, and includes papers on complex manifolds, algebraic geometry, Kahler metrics, affine geometry, partial differential equations, several complex variables, group actions and topology. The volume also includes essays on Calabi's mathematics by several of his mathematical admirers, including S.K. Donaldson, B. Lawson and S.-T. Yau, Marcel Berger; and Jean Pierre Bourguignon. This book is intended for mathematicians and graduate students around the world. Calabi's visionary contributions will certainly continue to shape the course of this subject far into the future.
The book presents a comprehensive guide to the study of Lie systems from the fundamentals of differential geometry to the development of contemporary research topics. It embraces several basic topics on differential geometry and the study of geometric structures while developing known applications in the theory of Lie systems. The book also includes a brief exploration of the applications of Lie systems to superequations, discrete systems, and partial differential equations.Offering a complete overview from the topic's foundations to the present, this book is an ideal resource for Physics and Mathematics students, doctoral students and researchers.
This book contains all research papers published by the distinguished Brazilian mathematician Elon Lima. It includes the papers from his PhD thesis on homotopy theory, which are hard to find elsewhere. Elon Lima wrote more than 40 books in the field of topology and dynamical systems. He was a profound mathematician with a genuine vocation to teach and write mathematics.
Professor Atiyah is one of the greatest living mathematicians and is renowned in the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still actively involved in the mathematics community. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into seven volumes, with the first five volumes divided thematically and the sixth and seventh arranged by date. This seventh volume in Michael Atiyah's Collected Works contains a selection of his publications between 2002 and 2013, including his work on skyrmions; K-theory and cohomology; geometric models of matter; curvature, cones and characteristic numbers; and reflections on the work of Riemann, Einstein and Bott.
This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces.The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.
This volume is a compilation of papers presented at the conference on differential geometry, in particular, minimal surfaces, real hypersurfaces of a non-flat complex space form, submanifolds of symmetric spaces and curve theory. It also contains new results or brief surveys in these areas. This volume provides fundamental knowledge to readers (such as differential geometers) who are interested in the theory of real hypersurfaces in a non-flat complex space form.
The theory of Riemann surfaces occupies a very special place in
mathematics. It is a culmination of much of traditional calculus,
making surprising connections with geometry and arithmetic. It is
an extremely useful part of mathematics, knowledge of which is
needed by specialists in many other fields. It provides a model for
a large number of more recent developments in areas including
manifold topology, global analysis, algebraic geometry, Riemannian
geometry, and diverse topics in mathematical physics.
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis-Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi-Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang-Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help applied mathematics, computer science and engineering students and researchers gain a firm mathematical grounding to use these tools confidently in their research. Its chart-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.
During the last few years, the field of nonlinear problems has undergone great development. This book consisting of the updated Grundlehren volume 252 by the author and of a newly written part, deals with some important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved. Each problem is explained, up-to-date results are given and proofs are presented. Thus, the reader is given access, for each specific problem, to its present status of solution as well as to the most up-to-date methods for approaching it. The main objective of the book is to explain some methods and new techniques, and to apply them. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner-Weitzenboeck formula and the corresponding Bochner inequality, gradient estimates, Bakry-Ledoux's Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger-Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue - not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincare brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology.By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Poincare in their full brilliance.
This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field. |
You may like...
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, …
Hardcover
Geometric Complex Analysis - In Honor of…
Jisoo Byun, Hong Rae Cho, …
Hardcover
R4,061
Discovery Miles 40 610
Lectures on Poisson Geometry
Marius Crainic, Rui Loja Fernandes, …
Paperback
Differential Geometry and Global…
Bang-Yen Chen, Nicholas D. Brubaker, …
Paperback
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,124
Discovery Miles 11 240
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
|