![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
An important question in geometry and analysis is to know when two "k"-forms "f "and g are equivalent through a change of variables. The problem is therefore to find a map " "so that it satisfies the pullback equation: " ""*"("g") = "f." In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases "k "= 2 and "k "= "n," but much less when 3 "k " "n"-1. The present monograph provides thefirst comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincare lemma. The core of the book discusses the case "k "= "n," and then the case 1 "k " "n"-1 with special attention on the case "k "= 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Holder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Holder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. "The Pullback Equation for Differential Forms "is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars."
This reference presents the proceedings of an international meeting on the occasion of theUniversity of Bologna's ninth centennial-highlighting the latest developments in the field ofgeometry and complex variables and new results in the areas of algebraic geometry,differential geometry, and analytic functions of one or several complex variables.Building upon the rich tradition of the University of Bologna's great mathematics teachers, thisvolume contains new studies on the history of mathematics, including the algebraic geometrywork of F. Enriques, B. Levi, and B. Segre ... complex function theory ideas of L. Fantappie,B. Levi, S. Pincherle, and G. Vitali ... series theory and logarithm theory contributions of P.Mengoli and S. Pincherle ... and much more. Additionally, the book lists all the University ofBologna's mathematics professors-from 1860 to 1940-with precise indications of eachcourse year by year.Including survey papers on combinatorics, complex analysis, and complex algebraic geometryinspired by Bologna's mathematicians and current advances, Geometry and ComplexVariables illustrates the classic works and ideas in the field and their influence on today'sresearch.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This book discusses the geometrical aspects of Kaluza-Klein theories. The ten chapters cover topics from the differential and Riemannian manifolds to the reduction of Einstein-Yang-Mills action. It would definitely prove interesting reading to physicists and mathematicians, theoretical and experimental.
This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.
This book proposes a new approach which is designed to serve as an introductory course in differential geometry for advanced undergraduate students. It is based on lectures given by the author at several universities, and discusses calculus, topology, and linear algebra.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the "quantum isometry group", highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes' "noncommutative geometry" and the operator-algebraic theory of "quantum groups". The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed.
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard's theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book will also prove useful for researchers. The prerequisites for this text have intentionally been kept to a minimum so that undergraduate students can also benefit from it. It is a cherished conviction that "mathematical proofs are the core of all mathematical joy," a standpoint this book vividly reflects.
This monograph provides a systematic treatment of differential geometry in modeling of incompatible fiite deformations in solids. Included are discussions of generalized deformations and stress measures on smooth manifolds, geometrical formalizations for structurally inhomogeneous bodies, representations for configurational forces, and evolution equations.
Multiplicity diagrams can be viewed as schemes for describing the phenomenon of "symmetry breaking" in quantum physics: Suppose the state space of a quantum mechanical system is a Hilbert space V, on which the symmetry group G of the system acts irreducibly. How does this Hilbert space break up when G gets replaced by a smaller symmetry group H? In the case where H is a maximal torus of a compact group a convenient way to record the multiplicities is as integers drawn on the weight lattice of H. The subject of this book is the multiplicity diagrams associated with U(n), O(n), and the other classical groups. It presents such topics as asymptotic distributions of multiplicities, hierarchical patterns in multiplicity diagrams, lacunae, and the multiplicity diagrams of the rank-2 and rank-3 groups. The authors take a novel approach, using the techniques of symplectic geometry. They develop in detail some themes that were touched on in Symplectic Techniques in Physics (V. Guillemin and S. Sternberg, Cambridge University Press, 1984), including the geometry of the moment map, the Duistermaat-Heckman theorem, the interplay between coadjoint orbits and representation theory, and quantization. Students and researchers in geometry and mathematical physics will find this book fascinating.
This book documents the recent focus on a branch of Riemannian geometry called Comparison Geometry. The simple idea of comparing the geometry of an arbitrary Riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution recently. This volume is an up-to-date reflection of the recent development regarding spaces with lower (or two-sided) curvature bounds. The content reflects some of the most exciting activities in comparison geometry during the year and especially of the Mathematical Sciences Research Institute's workshop devoted to the subject. This volume features both survey and research articles. It also provides complete proofs: in one case, a new, unified strategy is presented and new proofs are offered. This volume will be a valuable source for advanced researchers and those who wish to learn about and contribute to this beautiful subject.
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.
This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.
This collection presents the major mathematical works of Isadore Singer, selected by Singer himself, and organized thematically into three volumes: 1. Functional analysis, differential geometry and eigenvalues 2. Index theory 3. Gauge theory and physics Each volume begins with a commentary (and in the first volume, a short biography of Singer), and then presents the works on its theme in roughly chronological order.
The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians. This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function. The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.
The geometry of complex hyperbolic space has not, so far, been given a comprehensive treatment in the literature. This book seeks to address this by providing an overview of this particularly rich area of research, and is largely motivated by the wide applications in other areas of mathematics and physics. |
You may like...
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart
Hardcover
R1,124
Discovery Miles 11 240
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Holomorphic Morse Inequalities and…
Xiaonan Ma, George Marinescu
Hardcover
R3,399
Discovery Miles 33 990
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Recent Trends in Lorentzian Geometry
Miguel Sanchez, Miguel Ortega, …
Hardcover
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
|