![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
This is the fifth and revised edition of a well-received textbook that aims at bridging the gap between the engineering course of tensor algebra on the one hand and the mathematical course of classical linear algebra on the other hand. In accordance with the contemporary way of scientific publication, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. As such, this new edition also discusses such modern topics of solid mechanics as electro- and magnetoelasticity. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this textbook addresses graduate students as well as scientists working in this field and in particular dealing with multi-physical problems. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
This book is a considerable amplification and modernisation of the authors' earlier Essential Relativity. It aims to bring the challenge and excitement of modern relativity and cosmology at rigorous mathematical level within reach of advanced undergraduates and beginning graduates, while containing enough new material to interest the experienced lecturer.
This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.
This book gives an account of the fundamental results in geometric stability theory, a subject that has grown out of categoricity and classification theory. This approach studies the fine structure of models of stable theories, using the geometry of forking; this often achieves global results relevant to classification theory. Topics range from Zilber-Cherlin classification of infinite locally finite homogenous geometries, to regular types, their geometries, and their role in superstable theories. The structure and existence of definable groups is featured prominently, as is work by Hrushovski. The book is unique in the range and depth of material covered and will be invaluable to anyone interested in modern model theory.
This book proposes a new approach which is designed to serve as an introductory course in differential geometry for advanced undergraduate students. It is based on lectures given by the author at several universities, and discusses calculus, topology, and linear algebra.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory.
Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-K hler manifolds are given.
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the "quantum isometry group", highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes' "noncommutative geometry" and the operator-algebraic theory of "quantum groups". The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed.
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established in recent years by many mathematicians. This text presents some of these modern techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application, for the first time in book form, to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the book's original ideas should make it appeal to researchers in mechanics and algebraic geometry as well.
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
This monograph provides a systematic treatment of differential geometry in modeling of incompatible fiite deformations in solids. Included are discussions of generalized deformations and stress measures on smooth manifolds, geometrical formalizations for structurally inhomogeneous bodies, representations for configurational forces, and evolution equations.
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help applied mathematics, computer science and engineering students and researchers gain a firm mathematical grounding to use these tools confidently in their research. Its chart-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This book collects original peer-reviewed contributions to the conferences organised by the international research network "Minimal surfaces: Integrable Systems and Visualization" financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3-5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations.
This collection presents the major mathematical works of Isadore Singer, selected by Singer himself, and organized thematically into three volumes: 1. Functional analysis, differential geometry and eigenvalues 2. Index theory 3. Gauge theory and physics Each volume begins with a commentary (and in the first volume, a short biography of Singer), and then presents the works on its theme in roughly chronological order.
The present book is a translation and an expansion of lecture notes cor- sponding to a course of Mathematics of Control delivered during four years at the Ecole Nationale des Ponts et Chauss ees (Marne-la-Vall ee, France) to Master students. A reduced version of this course has also been given at the Master level at the University of Paris-Sud since eight years. It may the- fore serve as lecture notes for teaching at the Master or PhD level but also as a comprehensive introduction to researchers interested in atness and more generally in the mathematical theory of nite dimensional systems and c- trol. This book may be seen as an outcome of the applied research policy pi- oneered by the Ecole des Mines de Paris (now MINES-ParisTech), France, aiming not only at academic excellence, but also at collaborating with - dustries on speci c innovative projects to enhance technological innovation using the most advanced know-how. This in uence, though indirectly visible, mainly concerns the originality of some of the topics addressed here which are, in a sense, a theoretic synthesis of the author's applied contributions and viewpoints in the control eld, continuously elaborated and modi ed in contact with the industrial realities. Such a synthesis wouldn't have been made possible without the scienti c trust and nancial support of many c- panies during periods ranging from two to ten years.
This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.
This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.
This book documents the recent focus on a branch of Riemannian geometry called Comparison Geometry. The simple idea of comparing the geometry of an arbitrary Riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution recently. This volume is an up-to-date reflection of the recent development regarding spaces with lower (or two-sided) curvature bounds. The content reflects some of the most exciting activities in comparison geometry during the year and especially of the Mathematical Sciences Research Institute's workshop devoted to the subject. This volume features both survey and research articles. It also provides complete proofs: in one case, a new, unified strategy is presented and new proofs are offered. This volume will be a valuable source for advanced researchers and those who wish to learn about and contribute to this beautiful subject. |
![]() ![]() You may like...
Alfred's Basic Piano Prep Course Theory…
Willard A Palmer, Morton Manus, …
Staple bound
Piano Sonatas, Volume 4 (Nos. 25-32)
Ludwig Van Beethoven, Stewart Gordon
Book
Alfred's Basic Piano Library Lesson 2-3…
Willard A Palmer, Morton Manus, …
Sheet music
Alfred'S Basic Piano Library Technic…
Willard A Palmer, Morton Manus, …
Paperback
|