![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
In succesion to former international meetings on differential geometry held in Hungary and also as a satellite conference of ECM96, the European Mathematical Congress, a Conference on Differential Geometry took place in Budapest from July 27 to July 30, 1996. The host of the Conference was Lorand Eotvos University. The Conference had the following Programme Committee: D.V. Alekseevsky, J.J. Duistermaat, J. Eells, A. Haefliger, O. Kowalski, S. Marchifava, J. Szenthe, L. Tamassy, L. Vanhecke. The participants came mainly from Europe and their total number was 190. The programme included plenary lectures by J. Eliashberg, S. Gallot, O. Kowalski, B. Leeb, and also 135 lectures in 4 sections. The social events, an opening reception and a farewel party, presented inspiring atmosphere to create scientific contacts and also for fruitful discussions. In preparation of the Conference and during it B. Csikos and G. Moussong were constanly ready to help. The present volume contains detailed versions of lectures presented at the Conference and also a list of participants. The subjects cover a wide variety of topics in differential geometry and its applications and all of them contain essential new developments in their respective subjects. It is my pleasant duty to thank the participants who contributed to the success of the Conference, especially those who offered us their manuscripts for publication and also the referees who made several important observa tions. The preparation of the volume was managed with the assistance of E. Daroczy-Kiss."
'Guillemin and HaineaEURO (TM)s goal is to construct a well-documented road map that extends undergraduate understanding of multivariable calculus into the theory of differential forms. Throughout, the authors emphasize connections between differential forms and topology while making connections to single and multivariable calculus via the change of variables formula, vector space duals, physics; classical mechanisms, div, curl, grad, BrouweraEURO (TM)s fixed-point theorem, divergence theorem, and StokesaEURO (TM)s theorem ... The exercises support, apply and justify the developing road map.'CHOICEThere already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Cech cohomology groups of a differential manifold and its de Rham cohomology groups.
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.
This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds."
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
This self-containedtext is an excellent introductionto Lie groups and their actions on manifolds. Theauthors start withan elementarydiscussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference."
This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard's theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
Nonabelian multiplicative integration on curves is a classical theory. This volume is about the 2-dimensional case, which is much more difficult. In our construction, the setup is a Lie crossed module: there is a Lie group H, together with an action on it by another Lie group G. The multiplicative integral is an element of H, and it is the limit of Riemann products. Each Riemann product involves a fractal decomposition of the surface into kites (triangles with strings connecting them to the base point). There is a twisting of the integrand, that comes from a 1-dimensional multiplicative integral along the strings, with values in the group G.The main result of this work is the 3-dimensional nonabelian Stokes theorem. This result is new; only a special case of it was predicted (without proof) in papers in mathematical physics. Our constructions and proofs are of a straightforward nature. There are plenty of illustrations to clarify the geometric constructions.Our volume touches on some of the central issues (e.g., descent for nonabelian gerbes) in an unusually down-to-earth manner, involving analysis, differential geometry, combinatorics and Lie theory - instead of the 2-categories and 2-functors that other authors prefer.
Differential geometry is the study of the curvature and calculus of curves and surfaces. "A New Approach to Differential Geometry using Clifford's Geometric Algebra" simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. "" Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities. "
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:
The textbook is a very good start into the mathematical field of topology. A variety of topological concepts with some elementary applications are introduced. It is organized in such a way that the reader gets to significant applications quickly.This revised version corrects the many discrepancies in the earlier edition. The emphasis is on the geometric understanding and the use of new concepts, indicating that topology is really the language of modern mathematics.
This volume contains contributions by the main participants of the 4th International Colloquium on Differential Geometry and its Related Fields (ICDG2014). These articles cover recent developments and are devoted mainly to the study of some geometric structures on manifolds and graphs. Readers will find a broad overview of differential geometry and its relationship to other fields in mathematics and physics.
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
This volume is a compilation of new results and surveys on the current state of some aspects of the foliation theory presented during the conference "FOLIATIONS 2012". It contains recent materials on foliation theory which is related to differential geometry, the theory of dynamical systems and differential topology. Both the original research and survey articles found in here should inspire students and researchers interested in foliation theory and the related fields to plan his/her further research.
This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.
The book introduces the basic notions in Symplectic and Contact Geometry at the level of the second year graduate student. It also contains many exercises, some of which are solved only in the last chapter.We begin with the linear theory, then give the definition of symplectic manifolds and some basic examples, review advanced calculus, discuss Hamiltonian systems, tour rapidly group and the basics of contact geometry, and solve problems in chapter 8. The material just described can be used as a one semester course on Symplectic and Contact Geometry.The book contains also more advanced material, suitable to advanced graduate students and researchers.
This volume collects papers based on talks given at the conference "Geometrias'19: Polyhedra and Beyond", held in the Faculty of Sciences of the University of Porto between September 5-7, 2019 in Portugal. These papers explore the conference's theme from an interdisciplinary standpoint, all the while emphasizing the relevance of polyhedral geometry in contemporary academic research and professional practice. They also investigate how this topic connects to mathematics, art, architecture, computer science, and the science of representation. Polyhedra and Beyond will help inspire scholars, researchers, professionals, and students of any of these disciplines to develop a more thorough understanding of polyhedra.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry.
This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.
This volume consists of contributions by the main participants of the 3rd International Colloquium on Differential Geometry and its Related Fields (ICDG2012), which was held in Veliko Tarnovo, Bulgaria. Readers will find original papers by specialists and well-organized reports of recent developments in the fields of differential geometry, complex analysis, information geometry, mathematical physics and coding theory. This volume provides significant information that will be useful to researchers and serves as a good guide for young scientists. It is also for those who wish to start investigating these topics and interested in their interdisciplinary areas.
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds. This unique and expanded second edition comprises a comprehensive account of the latest updates and new results that cover total mean curvature and submanifolds of finite type. The longstanding biharmonic conjecture of the author's and the generalized biharmonic conjectures are also presented in details. This book will be of use to graduate students and researchers in the field of geometry. |
![]() ![]() You may like...
The Great Pianists - From Mozart to the…
Harold C. Schonberg
Paperback
Alfred's Basic All-In-One Course, Bk 4…
Willard A Palmer, Morton Manus, …
Staple bound
Trinity College London Piano Exam Pieces…
Trinity College London
Paperback
R255
Discovery Miles 2 550
Alfred's Basic Piano Prep Course Theory…
Willard A Palmer, Morton Manus, …
Staple bound
Alfred'S Basic Piano Library Technic…
Willard A Palmer, Morton Manus, …
Paperback
Alfred'S Premier Piano Course Theory 2b
Dennis Alexander, Gayle Kowalchyk, …
Book
|