![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
This graduate level text covers an exciting and active area of research at the crossroads of several different fields in mathematics and physics. In mathematics it involves Differential Geometry, Complex Algebraic Geometry, Symplectic Geometry, and in physics String Theory and Mirror Symmetry. Drawing extensively on the author's previous work, the text explains the advanced mathematics involved simply and clearly to both mathematicians and physicists. Starting with the basic geometry of connections, curvature, complex and Kahler structures suitable for beginning graduate students, the text covers seminal results such as Yau's proof of the Calabi Conjecture, and takes the reader all the way to the frontiers of current research in calibrated geometry, giving many open problems.
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman-Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques.Recent progress has attracted a renewed interest in this theoryfor many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samplesof these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field."
This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.
This is a research monograph, providing the first account in book form of the theory of harmonic morphisms between Riemannian manifolds, an area of Differential Geometry which has connections with Harmonic Maps and Brownian Motion.
This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the L(2) extension of holomorphic functions in the past 5 years.In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and separately by Q.-A. Guan and X.-Y. Zhou. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, Guan-Zhou, and Berndtsson-Lempert. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during the past 15 years.
This volume gathers contributions reflecting topics presented during an INDAM workshop held in Rome in May 2016. The event brought together many prominent researchers in both Mathematical Analysis and Numerical Computing, the goal being to promote interdisciplinary collaborations. Accordingly, the following thematic areas were developed: 1. Lagrangian discretizations and wavefront tracking for synchronization models; 2. Astrophysics computations and post-Newtonian approximations; 3. Hyperbolic balance laws and corrugated isometric embeddings; 4. "Caseology" techniques for kinetic equations; 5. Tentative computations of compressible non-standard solutions; 6. Entropy dissipation, convergence rates and inverse design issues. Most of the articles are presented in a self-contained manner; some highlight new achievements, while others offer snapshots of the "state of the art" in certain fields. The book offers a unique resource, both for young researchers looking to quickly enter a given area of application, and for more experienced ones seeking comprehensive overviews and extensive bibliographic references.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
An excellent reference for anyone needing to examine properties
of harmonic vector fields to help them solve research problems. The
book provides the main results of harmonic vector fields with an
emphasis on Riemannian manifolds using past and existing problems
to assist you in analyzing and furnishing your own conclusion for
further research. It emphasizes a combination of theoretical
development with practical applications for a solid treatment of
the subject useful to those new to research using differential
geometric methods in extensive detail.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaus problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaus problem have no interior branch points.
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations. Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables.
This book presents the proceedings of the 20th International Workshop on Hermitian Symmetric Spaces and Submanifolds, which was held at the Kyungpook National University from June 21 to 25, 2016. The Workshop was supported by the Research Institute of Real and Complex Manifolds (RIRCM) and the National Research Foundation of Korea (NRF). The Organizing Committee invited 30 active geometers of differential geometry and related fields from all around the globe to discuss new developments for research in the area. These proceedings provide a detailed overview of recent topics in the field of real and complex submanifolds.
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational sequence theory and its consequences for the global inverse problem (cohomology conditions)- examples of variational functionals of mathematical physics. Complete formulations and proofs of all basic assertions are given, based on theorems of global analysis explained in the Appendix.
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry - as differential geometry in general - has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.
The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks:- Geometry and topology of fibre bundles,- Clifford algebras, spin structures and Dirac operators,- Gauge theory.Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory.The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces.Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory.The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces, convex sets, etc., crucial ideas and above all abstract concepts needed for attaining the results are elucidated. These are conceptual notions, each built "above" the preceding and permitting an increase in abstraction, represented metaphorically by Jacob's ladder with its rungs: the 'ladder' in the Old Testament, that angels ascended and descended... In all this, the aim of the book is to demonstrate to readers the unceasingly renewed spirit of geometry and that even so-called "elementary" geometry is very much alive and at the very heart of the work of numerous contemporary mathematicians. It is also shown that there are innumerable paths yet to be explored and concepts to be created. The book is visually rich and inviting, so that readers may open it at random places and find much pleasure throughout according their own intuitions and inclinations. Marcel Berger is the author of numerous successful books on geometry, this book once again is addressed to all students and teachers of mathematics with an affinity for geometry.
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
This monograph is a unified presentation of several theories of
finding explicit formulas for heat kernels for both elliptic and
sub-elliptic operators. These kernels are important in the theory
of parabolic operators because they describe the distribution of
heat on a given manifold as well as evolution phenomena and
diffusion processes.
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash's legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
A basic problem in geometry is to ?nd canonical metrics on smooth manifolds. Such metrics can be speci?ed, for instance, by curvature conditions or extremality properties, and are expected to contain basic information on the topology of the underlying manifold. Constant curvature metrics on surfaces are such canonical metrics. Their distinguished role is emphasized by classical uniformization theory. Amorerecentcharacterizationofthesemetrics describes them ascriticalpoints of the determinant functional for the Laplacian.The key tool here is Polyakov'sva- ationalformula for the determinant. In higher dimensions, however,it is necessary to further restrict the problem, for instance, to the search for canonical metrics in conformal classes. Here two metrics are considered to belong to the same conf- mal class if they di?er by a nowhere vanishing factor. A typical question in that direction is the Yamabe problem ([165]), which asks for constant scalar curvature metrics in conformal classes. In connection with the problem of understanding the structure of Polyakov type formulas for the determinants of conformally covariant di?erential operators in higher dimensions, Branson ([31]) discovered a remarkable curvature quantity which now is called Branson's Q-curvature. It is one of the main objects in this book.
This book contains the Proceedings of the Ninth Mathematics of Surfaces Conference organised by the Institute of Mathematics and its Applications, and held in Cambridge, UK, on 4th - 6th September 2000. The papers describe the mathematical construction, representation, approximation, recognition, and manipulation of surfaces, with an emphasis on computational methods. Highlights include invited papers from M. Floater (SNTEF, Norway), O. Faugeras (INRIA, France), P. Giblin (Liverpool University, UK), M.-S. Kim (Seoul National University, Korea), J. Koenderink (University of Utrecht, Netherlands), N. Patrikalakis (MIT, USA), H. Pottmann (Technical University of Vienna, Austria) and R. Schaback (University of GAttingen, Germany).
This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the PoincariHopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskorn varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori.
The aim of this monograph is to present a self-contained introduction to some geometric and analytic aspects of the Yamabe problem. The book also describes a wide range of methods and techniques that can be successfully applied to nonlinear differential equations in particularly challenging situations. Such situations occur where the lack of compactness, symmetry and homogeneity prevents the use of more standard tools typically used in compact situations or for the Euclidean setting. The work is written in an easy style that makes it accessible even to non-specialists. After a self-contained treatment of the geometric tools used in the book, readers are introduced to the main subject by means of a concise but clear study of some aspects of the Yamabe problem on compact manifolds. This study provides the motivation and geometrical feeling for the subsequent part of the work. In the main body of the book, it is shown how the geometry and the analysis of nonlinear partial differential equations blend together to give up-to-date results on existence, nonexistence, uniqueness and a priori estimates for solutions of general Yamabe-type equations and inequalities on complete, non-compact Riemannian manifolds.
This book examines holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel. It opens perspectives on several active areas of research in complex, Kahler and symplectic geometry. A large number of applications are also included, such as an analytic proof of Kodaira's embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, compactification of complete Kahler manifolds of pinched negative curvature, Berezin-Toeplitz quantization, weak Lefschetz theorems, and asymptotics of the Ray-Singer analytic torsion.
The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are "minimal" in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory. |
![]() ![]() You may like...
Designing Embedded Internet Devices
Brian DeMuth, Dan Eisenreich
Paperback
R1,622
Discovery Miles 16 220
Total Quality Management And Operational…
John S Oakland, Robert J. Oakland, …
Paperback
R897
Discovery Miles 8 970
Guerrilla Data Analysis Using Microsoft…
Oz du Soleil, Bill Jelen
Paperback
R590
Discovery Miles 5 900
Handbook of Floating-Point Arithmetic
Jean-Michel Muller, Nicolas Brunie, …
Hardcover
R4,308
Discovery Miles 43 080
Frequency Analyses of Natural Extreme…
Jose A. Raynal-Villasenor
Hardcover
R4,171
Discovery Miles 41 710
|