![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry
The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research.
The mathematical theory of "open" dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an "open" dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a "black box" that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications.
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
Matrix-valued data sets - so-called second order tensor fields - have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.
Differential geometry and analytic group theory are among the most powerful tools in mathematical physics. This volume presents review articles on a wide variety of applications of these techniques in classical continuum physics, gauge theories, quantization procedures, and the foundations of quantum theory. The articles, written by leading scientists, address both researchers and grad- uate students in mathematics, physics, and philosophy of science.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.
Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kahler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Muller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang
This book is based on the experience of teaching the subject by the author in Russia, France, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics on tensors, Riemannian geometry and geometric approach to partial differential equations. Application of approximate transformation groups to the equations of general relativity in the de Sitter space simplifies the subject significantly.
In recognition of professor Shiing-Shen Chern's long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern's total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This third volume comprises selected papers written between 1965 and 1979.
This volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930-2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while reminding historical results obtained in the past, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Experience gained during a ten-year long involvement in modelling, program ming and application in nonlinear optimization helped me to arrive at the conclusion that in the interest of having successful applications and efficient software production, knowing the structure of the problem to be solved is in dispensable. This is the reason why I have chosen the field in question as the sphere of my research. Since in applications, mainly from among the nonconvex optimization models, the differentiable ones proved to be the most efficient in modelling, especially in solving them with computers, I started to deal with the structure of smooth optimization problems. The book, which is a result of more than a decade of research, can be equally useful for researchers and stu dents showing interest in the domain, since the elementary notions necessary for understanding the book constitute a part of the university curriculum. I in tended dealing with the key questions of optimization theory, which endeavour, obviously, cannot bear all the marks of completeness. What I consider the most crucial point is the uniform, differential geometric treatment of various questions, which provides the reader with opportunities for learning the structure in the wide range, within optimization problems. I am grateful to my family for affording me tranquil, productive circumstances. I express my gratitude to F."
In this text, integral geometry deals with Radon's problem of representing a function on a manifold in terms of its integrals over certain submanifolds-hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: "Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area." -Boris Rubin, Louisiana State University
This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.
Our purpose and main concern in writing this book is to illuminate classical concepts from the noncommutative viewpoint, to make the language and techniques of noncommutative geometry accessible and familiar to practi- tioners of classical mathematics, and to benefit physicists interested in the uses of noncommutative spaces. Same may say that ours is a very "com- mutative" way to deal with noncommutative matters; this charge we readily admit. Noncommutative geometry amounts to a program of unification of math- ematics under the aegis of the quantum apparatus, i.e., the theory of ope- rators and of C*-algebras. Largely the creation of a single person, Alain Connes, noncommutative geometry is just coming of age as the new century opens. The bible of the subject is, and will remain, Connes' Noncommuta- tive Geometry (1994), itself the "3.8-fold expansion" of the French Geome- trie non commutative ( 1990). Theseare extraordinary books, a "tapestry" of physics and mathematics, in the words of Vaughan jones, and the work of a "poet of modern science," according to Daniel Kastler, replete with subtle knowledge and insights apt to inspire several generations.
This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.
Geometry, if understood properly, is still the closest link between mathematics and theoretical physics, even for quantum concepts. In this collection of outstanding survey articles the concept of non-commutation geometry and the idea of quantum groups are discussed from various points of view. Furthermore the reader will find contributions to conformal field theory and to superalgebras and supermanifolds. The book addresses both physicists and mathematicians.
In recognition of professor Shiing-Shen Chern s long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern s total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This first volume comprises selected papers written between 1932 and 1975. In making the selections, Professor Chern gave preference to shorter and lesser-known papers."
The five lectures presented in this volume address very timely mathematical problems in relativity and cosmology. "Part I" is devoted to the initial value and evolution problems of the Einstein equations. Especially it deals with the Einstein-Yang-Mills-Boltzmann system, fluid models with finite or infinite conductivity, global evolution of a new (two-phase) model for gravitational collapse and the structure of maximal, asymptotically flat, vacuum solutions of the constraint equations which have the additional property of containing trapped surfaces. "Part II" focuses on geometrical-topological problems in relativity and cosmology: on the role of cosmic censorship for the global structure of the Einstein-Maxwell equations and on the mathematical structure of quantum conformal superspace. |
You may like...
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev
Hardcover
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli
Paperback
R1,960
Discovery Miles 19 600
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen
Hardcover
R5,379
Discovery Miles 53 790
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders
Hardcover
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Geometric Methods in PDE's
Giovanna Citti, Maria Manfredini, …
Hardcover
|