0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (33)
  • R500+ (1,167)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry

Tensor Geometry - The Geometric Viewpoint and its Uses (Hardcover, 2nd ed. 1991. Corr. 3rd printing 2009): C.T.J. Dodson,... Tensor Geometry - The Geometric Viewpoint and its Uses (Hardcover, 2nd ed. 1991. Corr. 3rd printing 2009)
C.T.J. Dodson, Timothy Poston
R4,000 Discovery Miles 40 000 Ships in 12 - 17 working days

This treatment of differential geometry and the mathematics required for general relativity makes the subject of this book accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists. Review from L'Enseignement Mathématique

Lie Methods in Deformation Theory (Hardcover, 1st ed. 2022): Marco Manetti Lie Methods in Deformation Theory (Hardcover, 1st ed. 2022)
Marco Manetti
R4,362 Discovery Miles 43 620 Ships in 12 - 17 working days

This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.

Foundations of Classical Electrodynamics - Charge, Flux, and Metric (Hardcover, 2003 ed.): Friedrich W. Hehl, Yuri N. Obukhov Foundations of Classical Electrodynamics - Charge, Flux, and Metric (Hardcover, 2003 ed.)
Friedrich W. Hehl, Yuri N. Obukhov
R2,667 Discovery Miles 26 670 Ships in 12 - 17 working days

This book presents a fresh, original exposition of the foundations of classical electrodynamics in the tradition of the so-called metric-free approach. The fundamental structure of classical electrodynamics is described in the form of six axioms: (1) electric charge conservation, (2) existence of the Lorentz force, (3) magnetic flux conservation, (4) localization of electromagnetic energy-momentum, (5) existence of an electromagnetic spacetime relation, and (6) splitting of the electric current into material and external pieces.
The first four axioms require an arbitrary 4-dimensional differentiable manifold. The fifth axiom characterizes spacetime as the environment in which the electromagnetic field propagates a" a research topic of considerable interest a" and in which the metric tensor of spacetime makes its appearance, thus coupling electromagnetism and gravitation. Repeated emphasis is placed on interweaving the mathematical definitions of physical notions and the actual physical measurement procedures.
The tool for formulating the theory is the calculus of exterior differential forms, which is explained in sufficient detail, along with the corresponding computer algebra programs. Prerequisites for the reader include a knowledge of elementary electrodynamics (with Maxwell's equations), linear algebra and elementary vector analysis; some knowledge of differential geometry would help. Foundations of Classical Electrodynamics unfolds systematically at a level suitable for graduate students and researchers in mathematics, physics, and electrical engineering.

An Introduction to Covariant Quantum Mechanics (Hardcover, 1st ed. 2022): Josef Janyska, Marco Modugno An Introduction to Covariant Quantum Mechanics (Hardcover, 1st ed. 2022)
Josef Janyska, Marco Modugno
R6,847 Discovery Miles 68 470 Ships in 10 - 15 working days

This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.

Geometry, Fields and Cosmology - Techniques and Applications (Hardcover, 1997 ed.): B.R. Iyer, C. V Vishveshwara Geometry, Fields and Cosmology - Techniques and Applications (Hardcover, 1997 ed.)
B.R. Iyer, C. V Vishveshwara
R6,222 Discovery Miles 62 220 Ships in 10 - 15 working days

This volume is based on the lectures given at the First Inter University Graduate School on Gravitation and Cosmology organized by IUCAA, Pune, in 1989. This series of Schools have been carefully planned to provide a sound background and preparation for students embarking on research in these and related topics. Consequently, the contents of these lectures have been meticulously selected and arranged. The topics in the present volume offer a firm mathematical foundation for a number of subjects to be de veloped later. These include Geometrical Methods for Physics, Quantum Field Theory Methods and Relativistic Cosmology. The style of the book is pedagogical and should appeal to students and research workers attempt ing to learn the modern techniques involved. A number of specially selected problems with hints and solutions have been included to assist the reader in achieving mastery of the topics. We decided to bring out this volume containing the lecture notes since we felt that they would be useful to a wider community of research workers, many of whom could not participate in the school. We thank all the lecturers for their meticulous lectures, the enthusiasm they brought to the discussions and for kindly writing up their lecture notes. It is a pleasure to thank G. Manjunatha for his meticulous assistence over a long period, in preparing this volume for publication."

Beyond Einstein - Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century (Hardcover, 1st ed. 2018):... Beyond Einstein - Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century (Hardcover, 1st ed. 2018)
David E. Rowe, Tilman Sauer, Scott A Walter
R4,672 Discovery Miles 46 720 Ships in 10 - 15 working days
Handbook of Normal Frames and Coordinates (Hardcover, 2006 ed.): Bozhidar Z. Iliev Handbook of Normal Frames and Coordinates (Hardcover, 2006 ed.)
Bozhidar Z. Iliev
R1,681 Discovery Miles 16 810 Ships in 10 - 15 working days

The main subject of the book is an up-to-date and in-depth survey of the theory of normal frames and coordinates in differential geometry.

The book can be used as a reference manual, a review of the existing results and an introduction to some new ideas and developments.

Practically all existing essential results and methods concerning normal frames and coordinates can be found in the book. Most of the results are represented in detail with full, in some cases new, proofs. All classical results are expanded and generalized in various directions. The normal frames and coordinates, for example, are defined and investigted for different kinds of derivations, in particular for (possibly linear) connections (with or without torsion) on manifolds, in vector bundes and on differentiable bundles; they are explored also for (possibly parallel) transports along paths in vector bundles. Theorems of existence, uniqueness and, possibly, holonomicity of the normal frames and coordinates are proved; mostly, the proofs are constructive and some of their parts can be used independently for other tasks.

Besides published results, their extensions and generalizations, the book contains completely new results which appear for the first time, such as for instance some links between (existence of) normal frames/coordinates in vector bundles and curvature/torsion.

As secondary items, elements of the theory of (possibly linear) connections on manifolds, in vector bundles and on differentiable bundles and of (possibly parallel or linear) transports along paths in vector and on differentiable bundles are presented.

The theory of the monograph is illustrated with a number of examples and exercices.

The contents of the book can be used for applications in differential geometry, e.g. in the theories of (linear) connections and (linear or parallel) transports along paths, and in the theoretical/mathematical physics, e.g. in the theories of gravitation, gauge theories and fibre bundle versions of quantum mechanics and (Lagrangian) classical and quantum field theories.

The potential audience ranges from graduate and postgraduate students to research scientists working in the fields of differential geometry and theoretical/mathematical physics.

Arithmetic L-Functions and Differential Geometric Methods - Regulators IV, May 2016, Paris (Hardcover, 1st ed. 2021): Pierre... Arithmetic L-Functions and Differential Geometric Methods - Regulators IV, May 2016, Paris (Hardcover, 1st ed. 2021)
Pierre Charollois, Gerard Freixas i Montplet, Vincent Maillot
R5,382 Discovery Miles 53 820 Ships in 12 - 17 working days

This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.

Geometry V - Minimal Surfaces (Hardcover, 1997 ed.): H. Fujimoto Geometry V - Minimal Surfaces (Hardcover, 1997 ed.)
H. Fujimoto; Edited by Robert Osserman; Contributions by S. Hildebrandt, D. Hoffmann, H. Karcher, …
R3,193 Discovery Miles 31 930 Ships in 10 - 15 working days

Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."

Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021): Bahar Acu, Catherine Cannizzo,... Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021)
Bahar Acu, Catherine Cannizzo, Dusa McDuff, Ziva Myer, Yu Pan, …
R3,263 R1,675 Discovery Miles 16 750 Save R1,588 (49%) Ships in 12 - 17 working days

This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology. This field has experienced significant and exciting growth in the past few decades, and this volume provides an accessible introduction into many active research problems in this area. The papers were written with a broad audience in mind so as to reach a wide range of mathematicians at various levels. Aside from teaching readers about developing research areas, this book will inspire researchers to ask further questions to continue to advance the field. The volume contains both original results and survey articles, presenting the results of collaborative research on a wide range of topics. These projects began at the Research Collaboration Conference for Women in Symplectic and Contact Geometry and Topology (WiSCon) in July 2019 at ICERM, Brown University. Each group of authors included female and nonbinary mathematicians at different career levels in mathematics and with varying areas of expertise. This paved the way for new connections between mathematicians at all career levels, spanning multiple continents, and resulted in the new collaborations and directions that are featured in this work.

Flow Lines and Algebraic Invariants in Contact Form Geometry (Hardcover, 2003 ed.): Abbas Bahri Flow Lines and Algebraic Invariants in Contact Form Geometry (Hardcover, 2003 ed.)
Abbas Bahri
R1,739 Discovery Miles 17 390 Ships in 10 - 15 working days

This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.

The Inverse Problem of the Calculus of Variations - Local and Global Theory (Hardcover, 1st ed. 2015): Dmitry V. Zenkov The Inverse Problem of the Calculus of Variations - Local and Global Theory (Hardcover, 1st ed. 2015)
Dmitry V. Zenkov
R3,094 R2,109 Discovery Miles 21 090 Save R985 (32%) Ships in 12 - 17 working days

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

Differential Geometry: Manifolds, Curves, and Surfaces - Manifolds, Curves, and Surfaces (Hardcover, 1988 ed.): Marcel Berger Differential Geometry: Manifolds, Curves, and Surfaces - Manifolds, Curves, and Surfaces (Hardcover, 1988 ed.)
Marcel Berger; Translated by Silvio Levy; Bernard Gostiaux
R3,031 Discovery Miles 30 310 Ships in 12 - 17 working days

This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds."

Mathematical Analysis of Problems in the Natural Sciences (Hardcover, 2011 ed.): Vladimir Zorich Mathematical Analysis of Problems in the Natural Sciences (Hardcover, 2011 ed.)
Vladimir Zorich; Translated by Gerald G. Gould
R1,727 Discovery Miles 17 270 Ships in 10 - 15 working days

Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."

Geometry of Principal Sheaves (Hardcover, 2005 ed.): Efstathios Vassiliou Geometry of Principal Sheaves (Hardcover, 2005 ed.)
Efstathios Vassiliou
R3,303 Discovery Miles 33 030 Ships in 10 - 15 working days

L' inj' ' enuit' ' m eme d' un regard neuf (celui de la science l'est toujours) peut parfois ' 'clairer d' un jour nouveau d' anciens probl' emes. J.Monod [77, p. 13] his book is intended as a comprehensive introduction to the theory of T principalsheaves andtheirconnections inthesettingofAbstractDi?- ential Geometry (ADG), the latter being initiated by A. Mallios'sGeometry of Vector Sheaves [62]. Based on sheaf-theoretic methods and sheaf - homology, the presentGeometry of Principal Sheaves embodies the classical theory of connections on principal and vector bundles, and connections on vector sheaves, thus paving the way towards a uni?ed (abstract) gauge t- ory and other potential applications to theoretical physics. We elaborate on the aforementioned brief description in the sequel. Abstract (ADG) vs. Classical Di?erential Geometry (CDG). M- ern di?erential geometry is built upon the fundamental notions of di?er- tial (smooth) manifolds and ?ber bundles, based,intheir turn, on ordinary di?erential calculus. However, the theory of smooth manifolds is inadequate to cope, for - stance, with spaces like orbifolds, spaces with corners, or other spaces with more complicated singularities. This is a rather unfortunate situation, since one cannot apply the powerful methods of di?erential geometry to them or to any spaces that do not admit an ordinary method of di?erentiation. The ix x Preface same inadequacy manifests in physics, where many geometrical models of physical phenomena are non-smooth.

Introduction To Asymptotics - A Treatment Using Nonstandard Analysis (Hardcover): Douglas S. Jones Introduction To Asymptotics - A Treatment Using Nonstandard Analysis (Hardcover)
Douglas S. Jones
R2,010 Discovery Miles 20 100 Ships in 12 - 17 working days

"A very attractive feature of the book is the numerous examples illustrating the methods. A fine collection of exercises enriches each chapter, challenging the reader to check his progress in understanding the methods".Mathematical Reviews"As an introductory book to asymptotics, with chapters on uniform asymptotics and exponential asymptotics, this book clearly fills a gap it has a friendly size and contains many convincing numerical examples and interesting exercises. Hence, I recommend the book to everyone who works in asymptotics".SIAM, 1998" it is an excellent book that contains interesting results and methods for the researchers. It will be useful for the students interested in analysis and lectures on asymptotic methods The reviewer recommends the book to everyone who is interested in analysis, engineers and specialists in ODE-s"Acta Sci. Math. (Szeged), 1999

Geometry of Harmonic Maps (Hardcover, 1996 ed.): Yuanlong Xin Geometry of Harmonic Maps (Hardcover, 1996 ed.)
Yuanlong Xin
R3,175 Discovery Miles 31 750 Ships in 10 - 15 working days

Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems."

An Introduction to Mathematical Relativity (Hardcover, 1st ed. 2021): Jose Natario An Introduction to Mathematical Relativity (Hardcover, 1st ed. 2021)
Jose Natario
R1,988 Discovery Miles 19 880 Ships in 10 - 15 working days

This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.

Harmonic and Applied Analysis - From Radon Transforms to Machine Learning (Hardcover, 1st ed. 2021): Filippo De Mari, Ernesto... Harmonic and Applied Analysis - From Radon Transforms to Machine Learning (Hardcover, 1st ed. 2021)
Filippo De Mari, Ernesto De Vito
R2,556 R1,846 Discovery Miles 18 460 Save R710 (28%) Ships in 12 - 17 working days

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.

Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.): Alexander Reznikov, Norbert Schappacher Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.)
Alexander Reznikov, Norbert Schappacher
R1,646 Discovery Miles 16 460 Ships in 10 - 15 working days

This book is an outgrowth of the Workshop on "Regulators in Analysis, Geom etry and Number Theory" held at the Edmund Landau Center for Research in Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During the preparation and the holding of the workshop we were greatly helped by the director of the Landau Center: Lior Tsafriri during the time of the planning of the conference, and Hershel Farkas during the meeting itself. Organizing and running this workshop was a true pleasure, thanks to the expert technical help provided by the Landau Center in general, and by its secretary Simcha Kojman in particular. We would like to express our hearty thanks to all of them. However, the articles assembled in the present volume do not represent the proceedings of this workshop; neither could all contributors to the book make it to the meeting, nor do the contributions herein necessarily reflect talks given in Jerusalem. In the introduction, we outline our view of the theory to which this volume intends to contribute. The crucial objective of the present volume is to bring together concepts, methods, and results from analysis, differential as well as algebraic geometry, and number theory in order to work towards a deeper and more comprehensive understanding of regulators and secondary invariants. Our thanks go to all the participants of the workshop and authors of this volume. May the readers of this book enjoy and profit from the combination of mathematical ideas here documented.

Finslerian Geometries - A Meeting of Minds (Hardcover, 2000 ed.): P.L. Antonelli Finslerian Geometries - A Meeting of Minds (Hardcover, 2000 ed.)
P.L. Antonelli
R3,063 Discovery Miles 30 630 Ships in 10 - 15 working days

The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins .with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles."

Quantitative Tamarkin Theory (Hardcover, 1st ed. 2020): Jun Zhang Quantitative Tamarkin Theory (Hardcover, 1st ed. 2020)
Jun Zhang
R1,467 R1,061 Discovery Miles 10 610 Save R406 (28%) Ships in 12 - 17 working days

This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019

Nonlinear Waves and Solitons on Contours and Closed Surfaces (Hardcover, 3rd ed. 2022): Andrei Ludu Nonlinear Waves and Solitons on Contours and Closed Surfaces (Hardcover, 3rd ed. 2022)
Andrei Ludu
R4,363 Discovery Miles 43 630 Ships in 12 - 17 working days

This new edition has been thoroughly revised, expanded and contain some updates function of the novel results and shift of scientific interest in the topics. The book has a Foreword by Jerry L. Bona and Hongqiu Chen. The book is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering.

Geometric Continuum Mechanics (Hardcover, 1st ed. 2020): Reuven Segev, Marcelo Epstein Geometric Continuum Mechanics (Hardcover, 1st ed. 2020)
Reuven Segev, Marcelo Epstein
R1,999 Discovery Miles 19 990 Ships in 12 - 17 working days

This contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include: Global stress and hyper-stress theories Applications of de Rham currents to singular dislocations Manifolds of mappings for continuum mechanics Kinematics of defects in solid crystals Geometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.

Hardy Inequalities on Homogeneous Groups - 100 Years of Hardy Inequalities (Hardcover, 1st ed. 2019): Michael Ruzhansky,... Hardy Inequalities on Homogeneous Groups - 100 Years of Hardy Inequalities (Hardcover, 1st ed. 2019)
Michael Ruzhansky, Durvudkhan Suragan
R1,737 Discovery Miles 17 370 Ships in 12 - 17 working days

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hoermander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Alfred's Basic Adult Piano Course…
Willard A Palmer, Morton Manus, … Book R257 R239 Discovery Miles 2 390
La La Land (Piano Solo)
Benj Pasek, Justin Hurwitz, … Sheet music  (2)
R493 Discovery Miles 4 930
The Essential Jim Brickman, Volume 3…
Jim Brickman Book R520 R486 Discovery Miles 4 860
A Dozen a Day Book 1 (A Dozen a Day…
Edna Mae Burnam Hardcover R540 R505 Discovery Miles 5 050
Alfred's Basic Piano Course - Theory…
Willard A Palmer, Morton Manus, … Paperback  (1)
R261 R244 Discovery Miles 2 440
Basic Piano Prep Crs - Activity & Ear…
Gayle Kowalchyk, E. L. Lancaster Staple bound R260 R243 Discovery Miles 2 430
Essential Keyboard Trios - 10…
Scott Beard, Lucy Mauro Sheet music R489 Discovery Miles 4 890
Sonata in D Major, K. 311
Wolfgang Amadeus Mozart, Maurice Hinson Book R215 Discovery Miles 2 150
Piano Exam Pieces 2021 & 2022, ABRSM…
Abrsm Sheet music R397 Discovery Miles 3 970
Piano Sonatas, Volume 4 (Nos. 25-32)
Ludwig Van Beethoven, Stewart Gordon Book R748 R684 Discovery Miles 6 840

 

Partners