0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (33)
  • R500+ (1,167)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry

Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces (Hardcover, 1994 ed.): Victor Guillemin Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces (Hardcover, 1994 ed.)
Victor Guillemin
R3,115 Discovery Miles 31 150 Ships in 10 - 15 working days

The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.

Semi-Riemannian Maps and Their Applications (Hardcover, 1999 ed.): Eduardo Garcia-Rio, D.N. Kupeli Semi-Riemannian Maps and Their Applications (Hardcover, 1999 ed.)
Eduardo Garcia-Rio, D.N. Kupeli
R3,144 Discovery Miles 31 440 Ships in 10 - 15 working days

A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.

Lectures on Closed Geodesics (Hardcover, 1978 ed.): Wilhelm Klingenberg Lectures on Closed Geodesics (Hardcover, 1978 ed.)
Wilhelm Klingenberg
R3,166 Discovery Miles 31 660 Ships in 10 - 15 working days

The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

Topics in Physical Mathematics (Hardcover, 2010 ed.): Kishore Marathe Topics in Physical Mathematics (Hardcover, 2010 ed.)
Kishore Marathe
R4,074 Discovery Miles 40 740 Ships in 12 - 17 working days

As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition's theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.

Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.): Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier,... Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,801 Discovery Miles 38 010 Ships in 12 - 17 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Riemannian Topology and Geometric Structures on Manifolds (Hardcover, 2009 ed.): Krzysztof Galicki, Santiago R. Simanca Riemannian Topology and Geometric Structures on Manifolds (Hardcover, 2009 ed.)
Krzysztof Galicki, Santiago R. Simanca
R4,869 Discovery Miles 48 690 Ships in 10 - 15 working days

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kahler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest. "

The Riemann Zeta-Function (Hardcover, Reprint 2011): Anatoly A. Karatsuba, S.M. Voronin The Riemann Zeta-Function (Hardcover, Reprint 2011)
Anatoly A. Karatsuba, S.M. Voronin; Translated by Neal Koblitz
R6,516 Discovery Miles 65 160 Ships in 12 - 17 working days

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees - Applications to Non-Archimedean... Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees - Applications to Non-Archimedean Diophantine Approximation (Hardcover, 1st ed. 2019)
Anne Broise-Alamichel, Jouni Parkkonen, Frederic Paulin
R3,107 R2,138 Discovery Miles 21 380 Save R969 (31%) Ships in 12 - 17 working days

This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.

Partial Differential Equations and Group Theory - New Perspectives for Applications (Hardcover, 1994 ed.): J.F. Pommaret Partial Differential Equations and Group Theory - New Perspectives for Applications (Hardcover, 1994 ed.)
J.F. Pommaret
R3,376 R1,805 Discovery Miles 18 050 Save R1,571 (47%) Ships in 12 - 17 working days

Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry."

Geometric Optimal Control - Theory, Methods and Examples (Hardcover, 2012): Heinz Schattler, Urszula Ledzewicz Geometric Optimal Control - Theory, Methods and Examples (Hardcover, 2012)
Heinz Schattler, Urszula Ledzewicz
R2,796 Discovery Miles 27 960 Ships in 12 - 17 working days

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schattler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

The Mathematics of Knots - Theory and Application (Hardcover, 2011 Ed.): Markus Banagl, Denis Vogel The Mathematics of Knots - Theory and Application (Hardcover, 2011 Ed.)
Markus Banagl, Denis Vogel
R3,089 Discovery Miles 30 890 Ships in 10 - 15 working days

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.

Old and New Aspects in Spectral Geometry (Hardcover, 2001 ed.): M.-E. Craioveanu, Mircea Puta, Themistocles Rassias Old and New Aspects in Spectral Geometry (Hardcover, 2001 ed.)
M.-E. Craioveanu, Mircea Puta, Themistocles Rassias
R3,301 Discovery Miles 33 010 Ships in 10 - 15 working days

This work presents some classical as well as some very recent results and techniques concerning the spectral geometry corresponding to the Laplace-Beltrami operator and the Hodge-de Rham operators. It treats many topics that are not usually dealt with in this field, such as the continuous dependence of the eigenvalues with respect to the Riemannian metric in the CINFINITY-topology, and some of their consequences, such as Uhlenbeck's genericity theorem; examples of non-isometric flat tori in all dimensions greater than or equal to four; Gordon's classical technique for constructing isospectral closed Riemannian manifolds; a detailed presentation of Sunada's technique and Pesce's approach to isospectrality; Gordon and Webb's example of non-isometric convex domains in Rn (n>=4) that are isospectral for both Dirichlet and Neumann boundary conditions; the Chanillo-TrA]ves estimate for the first positive eigenvalue of the Hodge-de Rham operator, etc. Significant applications are developed, and many open problems, references and suggestions for further reading are given. Several themes for additional research are pointed out. Audience: This volume is designed as an introductory text for mathematicians and physicists interested in global analysis, analysis on manifolds, differential geometry, linear and multilinear algebra, and matrix theory. It is accessible to readers whose background includes basic Riemannian geometry and functional analysis. These mathematical prerequisites are covered in the first two chapters, thus making the book largely self-contained.

All the Math You Missed - (But Need to Know for Graduate School) (Paperback, 2nd Revised edition): Thomas A. Garrity All the Math You Missed - (But Need to Know for Graduate School) (Paperback, 2nd Revised edition)
Thomas A. Garrity
R1,162 R801 Discovery Miles 8 010 Save R361 (31%) Ships in 12 - 17 working days

Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.

Wagner's Theory of Generalised Heaps (Hardcover, 1st ed. 2017): Christopher Hollings, Mark V. Lawson Wagner's Theory of Generalised Heaps (Hardcover, 1st ed. 2017)
Christopher Hollings, Mark V. Lawson
R3,026 Discovery Miles 30 260 Ships in 10 - 15 working days

The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.

Special Relativity - An Introduction with 200 Problems and Solutions (Hardcover, Edition.): Michael Tsamparlis Special Relativity - An Introduction with 200 Problems and Solutions (Hardcover, Edition.)
Michael Tsamparlis
R2,885 Discovery Miles 28 850 Ships in 12 - 17 working days

Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using "heavier" mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity."

Fixed Point Theory in Distance Spaces (Hardcover, 2014 ed.): William Kirk, Naseer Shahzad Fixed Point Theory in Distance Spaces (Hardcover, 2014 ed.)
William Kirk, Naseer Shahzad
R2,653 R1,978 Discovery Miles 19 780 Save R675 (25%) Ships in 12 - 17 working days

This is a monograph on fixed point theory, covering the purely metric aspects of the theory-particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler's well known set-valued extension of that theorem, the extension of Banach's theorem to nonexpansive mappings, and Caristi's theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi's theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.

Introduction to Geometry of Manifolds with Symmetry (Hardcover, 1994 ed.): V.V. Trofimov Introduction to Geometry of Manifolds with Symmetry (Hardcover, 1994 ed.)
V.V. Trofimov
R3,226 Discovery Miles 32 260 Ships in 10 - 15 working days

This volume provides an introduction to the geometry of manifolds equipped with additional structures connected with the notion of symmetry. The content is divided into five chapters. Chapter I presents the elements of differential geometry which are used in subsequent chapters. Part of the chapter is devoted to general topology, part to the theory of smooth manifolds, and the remaining sections deal with manifolds with additional structures. Chapter II is devoted to the basic notions of the theory of spaces. One of the main topics here is the realization of affinely connected symmetric spaces as totally geodesic submanifolds of Lie groups. In Chapter IV, the most important classes of vector bundles are constructed. This is carried out in terms of differential forms. The geometry of the Euler class is of special interest here. Chapter V presents some applications of the geometrical concepts discussed. In particular, an introduction to modern methods of integration of nonlinear differential equations is given, as well as considerations involving the theory of hydrodynamic-type Poisson brackets with connections to interesting algebraic structures. For mathematicians and mathematical physicists wishing to obtain a good introduction to the geometry of manifolds. This volume can also be recommended as a supplementary graduate text.

Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications (Hardcover, 1996 ed.): Krishan L. Duggal, Aurel Bejancu Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications (Hardcover, 1996 ed.)
Krishan L. Duggal, Aurel Bejancu
R6,548 Discovery Miles 65 480 Ships in 10 - 15 working days

This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.

Special Metrics and Group Actions in Geometry (Hardcover, 1st ed. 2017): Simon G. Chiossi, Anna Fino, Emilio Musso, Fabio... Special Metrics and Group Actions in Geometry (Hardcover, 1st ed. 2017)
Simon G. Chiossi, Anna Fino, Emilio Musso, Fabio Podesta, Luigi Vezzoni
R4,090 Discovery Miles 40 900 Ships in 12 - 17 working days

The volume is a follow-up to the INdAM meeting "Special metrics and quaternionic geometry" held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5-8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon's profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.): Stig I. Andersson, Michel L Lapidus Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.)
Stig I. Andersson, Michel L Lapidus
R1,721 Discovery Miles 17 210 Ships in 10 - 15 working days

most polynomial growth on every half-space Re (z)::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are A-P-S] and Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation' (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(., t) = V(t)uoU. Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* (r)E), locally given by 00 K(x, y; t) = L>-IAk( k (r) 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2:: >- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op."

Rational Sphere Maps (Hardcover, 1st ed. 2021): John P. D'Angelo Rational Sphere Maps (Hardcover, 1st ed. 2021)
John P. D'Angelo
R3,815 Discovery Miles 38 150 Ships in 10 - 15 working days

This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html

Some Nonlinear Problems in Riemannian Geometry (Hardcover, 1998 ed.): Thierry Aubin Some Nonlinear Problems in Riemannian Geometry (Hardcover, 1998 ed.)
Thierry Aubin
R4,050 Discovery Miles 40 500 Ships in 10 - 15 working days

During the last few years, the field of nonlinear problems has undergone great development. This book consisting of the updated Grundlehren volume 252 by the author and of a newly written part, deals with some important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved. Each problem is explained, up-to-date results are given and proofs are presented. Thus, the reader is given access, for each specific problem, to its present status of solution as well as to the most up-to-date methods for approaching it. The main objective of the book is to explain some methods and new techniques, and to apply them. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber.

Elementary Topics in Differential Geometry (Hardcover, 1st ed. 1979. Corr. 4th printing 1994): J.A. Thorpe Elementary Topics in Differential Geometry (Hardcover, 1st ed. 1979. Corr. 4th printing 1994)
J.A. Thorpe
R2,629 Discovery Miles 26 290 Ships in 12 - 17 working days

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of 3. The student's preliminary understanding of higher dimensions is not cultivated."

Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics (Hardcover, 1996 ed.): Yuri E. Gliklikh Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics (Hardcover, 1996 ed.)
Yuri E. Gliklikh
R3,144 Discovery Miles 31 440 Ships in 10 - 15 working days

The geometrical methods in modem mathematical physics and the developments in Geometry and Global Analysis motivated by physical problems are being intensively worked out in contemporary mathematics. In particular, during the last decades a new branch of Global Analysis, Stochastic Differential Geometry, was formed to meet the needs of Mathematical Physics. It deals with a lot of various second order differential equations on finite and infinite-dimensional manifolds arising in Physics, and its validity is based on the deep inter-relation between modem Differential Geometry and certain parts of the Theory of Stochastic Processes, discovered not so long ago. The foundation of our topic is presented in the contemporary mathematical literature by a lot of publications devoted to certain parts of the above-mentioned themes and connected with the scope of material of this book. There exist some monographs on Stochastic Differential Equations on Manifolds (e. g. [9,36,38,87]) based on the Stratonovich approach. In [7] there is a detailed description of It6 equations on manifolds in Belopolskaya-Dalecky form. Nelson's book [94] deals with Stochastic Mechanics and mean derivatives on Riemannian Manifolds. The books and survey papers on the Lagrange approach to Hydrodynamics [2,31,73,88], etc. , give good presentations of the use of infinite-dimensional ordinary differential geometry in ideal hydrodynamics. We should also refer here to [89,102], to the previous books by the author [53,64], and to many others.

CR Submanifolds of Complex Projective Space (Hardcover, 2010 ed.): Mirjana Djoric, Masafumi Okumura CR Submanifolds of Complex Projective Space (Hardcover, 2010 ed.)
Mirjana Djoric, Masafumi Okumura
R1,704 Discovery Miles 17 040 Ships in 10 - 15 working days

Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Alfred'S Premier Piano Course Lesson 4
Dennis Alexander, Gayle Kowalchyk, … Staple bound R272 R257 Discovery Miles 2 570
Alfred's Basic Piano Library Recital 3
Willard A Palmer, Morton Manus, … Staple bound R197 R162 Discovery Miles 1 620
Alfred'S Basic All-in-One Sacred Course…
Willard A Palmer, Morton Manus, … Paperback  (1)
R242 R229 Discovery Miles 2 290
Alfred's Basic Adult All In One Course 3
Willard A Palmer, Morton Manus, … Paperback R414 R349 Discovery Miles 3 490
Lyric Moments - Complete Collection
Catherine Rollin Book R438 Discovery Miles 4 380
Sound Innovations for Concert Band, Book…
Robert Sheldon, Peter Boonshaft, … Paperback R229 R192 Discovery Miles 1 920
Alfred's Basic Piano Course - Theory…
Willard A Palmer, Morton Manus, … Paperback  (1)
R261 R244 Discovery Miles 2 440
300 Hundred Years at the Keyboard - 2nd…
Patricia Fallows-Hammond Hardcover R789 Discovery Miles 7 890
Alfred's Basic Piano Library Notespeller…
Gayle Kowalchyk, E. L. Lancaster Book R257 R239 Discovery Miles 2 390
Beethoven the Pianist - Musical…
Tilman Skowroneck Hardcover R2,693 Discovery Miles 26 930

 

Partners