0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1)
  • R250 - R500 (34)
  • R500+ (1,127)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry

Geometry V - Minimal Surfaces (Hardcover, 1997 ed.): H. Fujimoto Geometry V - Minimal Surfaces (Hardcover, 1997 ed.)
H. Fujimoto; Edited by Robert Osserman; Contributions by S. Hildebrandt, D. Hoffmann, H. Karcher, …
R2,804 Discovery Miles 28 040 Ships in 18 - 22 working days

Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."

Flow Lines and Algebraic Invariants in Contact Form Geometry (Hardcover, 2003 ed.): Abbas Bahri Flow Lines and Algebraic Invariants in Contact Form Geometry (Hardcover, 2003 ed.)
Abbas Bahri
R1,532 Discovery Miles 15 320 Ships in 18 - 22 working days

This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.

The Inverse Problem of the Calculus of Variations - Local and Global Theory (Hardcover, 1st ed. 2015): Dmitry V. Zenkov The Inverse Problem of the Calculus of Variations - Local and Global Theory (Hardcover, 1st ed. 2015)
Dmitry V. Zenkov
R2,851 R1,950 Discovery Miles 19 500 Save R901 (32%) Ships in 10 - 15 working days

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

Differential Geometry: Manifolds, Curves, and Surfaces - Manifolds, Curves, and Surfaces (Hardcover, 1988 ed.): Marcel Berger Differential Geometry: Manifolds, Curves, and Surfaces - Manifolds, Curves, and Surfaces (Hardcover, 1988 ed.)
Marcel Berger; Translated by Silvio Levy; Bernard Gostiaux
R2,688 Discovery Miles 26 880 Ships in 18 - 22 working days

This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds."

Mathematical Analysis of Problems in the Natural Sciences (Hardcover, 2011 ed.): Vladimir Zorich Mathematical Analysis of Problems in the Natural Sciences (Hardcover, 2011 ed.)
Vladimir Zorich; Translated by Gerald G. Gould
R1,521 Discovery Miles 15 210 Ships in 18 - 22 working days

Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."

Geometry of Principal Sheaves (Hardcover, 2005 ed.): Efstathios Vassiliou Geometry of Principal Sheaves (Hardcover, 2005 ed.)
Efstathios Vassiliou
R2,900 Discovery Miles 29 000 Ships in 18 - 22 working days

L' inj' ' enuit' ' m eme d' un regard neuf (celui de la science l'est toujours) peut parfois ' 'clairer d' un jour nouveau d' anciens probl' emes. J.Monod [77, p. 13] his book is intended as a comprehensive introduction to the theory of T principalsheaves andtheirconnections inthesettingofAbstractDi?- ential Geometry (ADG), the latter being initiated by A. Mallios'sGeometry of Vector Sheaves [62]. Based on sheaf-theoretic methods and sheaf - homology, the presentGeometry of Principal Sheaves embodies the classical theory of connections on principal and vector bundles, and connections on vector sheaves, thus paving the way towards a uni?ed (abstract) gauge t- ory and other potential applications to theoretical physics. We elaborate on the aforementioned brief description in the sequel. Abstract (ADG) vs. Classical Di?erential Geometry (CDG). M- ern di?erential geometry is built upon the fundamental notions of di?er- tial (smooth) manifolds and ?ber bundles, based,intheir turn, on ordinary di?erential calculus. However, the theory of smooth manifolds is inadequate to cope, for - stance, with spaces like orbifolds, spaces with corners, or other spaces with more complicated singularities. This is a rather unfortunate situation, since one cannot apply the powerful methods of di?erential geometry to them or to any spaces that do not admit an ordinary method of di?erentiation. The ix x Preface same inadequacy manifests in physics, where many geometrical models of physical phenomena are non-smooth.

Geometry of Harmonic Maps (Hardcover, 1996 ed.): Yuanlong Xin Geometry of Harmonic Maps (Hardcover, 1996 ed.)
Yuanlong Xin
R2,788 Discovery Miles 27 880 Ships in 18 - 22 working days

Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems."

Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021): Bahar Acu, Catherine Cannizzo,... Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021)
Bahar Acu, Catherine Cannizzo, Dusa McDuff, Ziva Myer, Yu Pan, …
R1,549 Discovery Miles 15 490 Ships in 10 - 15 working days

This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology. This field has experienced significant and exciting growth in the past few decades, and this volume provides an accessible introduction into many active research problems in this area. The papers were written with a broad audience in mind so as to reach a wide range of mathematicians at various levels. Aside from teaching readers about developing research areas, this book will inspire researchers to ask further questions to continue to advance the field. The volume contains both original results and survey articles, presenting the results of collaborative research on a wide range of topics. These projects began at the Research Collaboration Conference for Women in Symplectic and Contact Geometry and Topology (WiSCon) in July 2019 at ICERM, Brown University. Each group of authors included female and nonbinary mathematicians at different career levels in mathematics and with varying areas of expertise. This paved the way for new connections between mathematicians at all career levels, spanning multiple continents, and resulted in the new collaborations and directions that are featured in this work.

Instanton Counting, Quantum Geometry and Algebra (Hardcover, 1st ed. 2021): Taro Kimura Instanton Counting, Quantum Geometry and Algebra (Hardcover, 1st ed. 2021)
Taro Kimura
R3,675 Discovery Miles 36 750 Ships in 10 - 15 working days

This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.

One Hundred Years of Gauge Theory - Past, Present and Future Perspectives (Hardcover, 1st ed. 2020): Silvia De Bianchi, Claus... One Hundred Years of Gauge Theory - Past, Present and Future Perspectives (Hardcover, 1st ed. 2020)
Silvia De Bianchi, Claus Kiefer
R2,916 Discovery Miles 29 160 Ships in 18 - 22 working days

This book presents a multidisciplinary guide to gauge theory and gravity, with chapters by the world's leading theoretical physicists, mathematicians, historians and philosophers of science. The contributions from theoretical physics explore e.g. the consistency of the unification of gravitation and quantum theory, the underpinnings of experimental tests of gauge theory and its role in shedding light on the relationship between mathematics and physics. In turn, historians and philosophers of science assess the impact of Weyl's view on the philosophy of science. Graduate students, lecturers and researchers in the fields of history of science, theoretical physics and philosophy of science will benefit from this book by learning about the role played by Weyl's Raum-Zeit-Materie in shaping several modern research fields, and by gaining insights into the future prospects of gauge theory in both theoretical and experimental physics. Furthermore, the book facilitates interdisciplinary exchange and conceptual innovation in tackling fundamental questions about our deepest theories of physics. Chapter "Weyl's Raum-Zeit-Materie and the Philosophy of Science" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com

Directed Quantities in Electrodynamics (Hardcover, 1st ed. 2021): Bernard Jancewicz Directed Quantities in Electrodynamics (Hardcover, 1st ed. 2021)
Bernard Jancewicz
R3,371 Discovery Miles 33 710 Ships in 18 - 22 working days

This monograph explores classical electrodynamics from a geometrical perspective with a clear visual presentation throughout. Featuring over 200 figures, readers will delve into the definitions, properties, and uses of directed quantities in classical field theory. With an emphasis on both mathematical and electrodynamic concepts, the author's illustrative approach will help readers understand the critical role directed quantities play in physics and mathematics. Chapters are organized so that they gradually scale in complexity, and carefully guide readers through important topics. The first three chapters introduce directed quantities in three dimensions with and without the metric, as well as the development of the algebra and analysis of directed quantities. Chapters four through seven then focus on electrodynamics without the metric, such as the premetric case, waves, and fully covariant four-dimensional electrodynamics. Complementing the book's careful structure, exercises are included throughout for readers seeking further opportunities to practice the material. Directed Quantities in Electrodynamics will appeal to students, lecturers, and researchers of electromagnetism. It is particularly suitable as a supplement to standard textbooks on electrodynamics.

Michael Atiyah Collected Works - 7 Volume Set (Multiple copy pack): Michael Atiyah Michael Atiyah Collected Works - 7 Volume Set (Multiple copy pack)
Michael Atiyah
R51,392 Discovery Miles 513 920 Ships in 10 - 15 working days

Professor Atiyah is one of the greatest living mathematicians and is renowned in the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still actively involved in the mathematics community. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into seven volumes, with the first five volumes divided thematically and the sixth and seventh arranged by date. This seven volume set of the collected works of Professor Sir Michael Atiyah, includes: Collected Works: Volume 1: Early Papers; General Papers Collected Works: Volume 2: K-Theory Collected Works: Volume 3: Index Theory: 1 Collected Works: Volume 4: Index Theory: 2 Collected Works: Volume 5: Gauge Theories Collected Works: Volume 6: Publications between 1987 and 2002 New for 2014: Collected Works: Volume 7: 2002-2013, including Sir Michael's work on skyrmions; K-theory and cohomology; geometric models of matter; curvature, cones and characteristic numbers; and reflections on the work of Riemann, Einstein and Bott.

Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.): Alexander Reznikov, Norbert Schappacher Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.)
Alexander Reznikov, Norbert Schappacher
R1,450 Discovery Miles 14 500 Ships in 18 - 22 working days

This book is an outgrowth of the Workshop on "Regulators in Analysis, Geom etry and Number Theory" held at the Edmund Landau Center for Research in Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During the preparation and the holding of the workshop we were greatly helped by the director of the Landau Center: Lior Tsafriri during the time of the planning of the conference, and Hershel Farkas during the meeting itself. Organizing and running this workshop was a true pleasure, thanks to the expert technical help provided by the Landau Center in general, and by its secretary Simcha Kojman in particular. We would like to express our hearty thanks to all of them. However, the articles assembled in the present volume do not represent the proceedings of this workshop; neither could all contributors to the book make it to the meeting, nor do the contributions herein necessarily reflect talks given in Jerusalem. In the introduction, we outline our view of the theory to which this volume intends to contribute. The crucial objective of the present volume is to bring together concepts, methods, and results from analysis, differential as well as algebraic geometry, and number theory in order to work towards a deeper and more comprehensive understanding of regulators and secondary invariants. Our thanks go to all the participants of the workshop and authors of this volume. May the readers of this book enjoy and profit from the combination of mathematical ideas here documented.

Finslerian Geometries - A Meeting of Minds (Hardcover, 2000 ed.): P.L. Antonelli Finslerian Geometries - A Meeting of Minds (Hardcover, 2000 ed.)
P.L. Antonelli
R2,690 Discovery Miles 26 900 Ships in 18 - 22 working days

The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins .with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles."

An Introduction to Mathematical Relativity (Hardcover, 1st ed. 2021): Jose Natario An Introduction to Mathematical Relativity (Hardcover, 1st ed. 2021)
Jose Natario
R1,749 Discovery Miles 17 490 Ships in 18 - 22 working days

This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.

Einstein Equations: Local Energy, Self-Force, and Fields in General Relativity - Domoschool 2019 (Hardcover, 1st ed. 2023):... Einstein Equations: Local Energy, Self-Force, and Fields in General Relativity - Domoschool 2019 (Hardcover, 1st ed. 2023)
Sergio Luigi Cacciatori, Alexander Kamenshchik
R3,321 Discovery Miles 33 210 Ships in 18 - 22 working days

This volume guides early-career researchers through recent breakthroughs in mathematics and physics as related to general relativity. Chapters are based on courses and lectures given at the July 2019 Domoschool, International Alpine School in Mathematics and Physics, held in Domodossola, Italy, which was titled "Einstein Equations: Physical and Mathematical Aspects of General Relativity". Structured in two parts, the first features four courses from prominent experts on topics such as local energy in general relativity, geometry and analysis in black hole spacetimes, and antimatter gravity. The second part features a variety of papers based on talks given at the summer school, including topics like: Quantum ergosphere General relativistic Poynting-Robertson effect modelling Numerical relativity Length-contraction in curved spacetime Classicality from an inhomogeneous universe Einstein Equations: Local Energy, Self-Force, and Fields in General Relativity will be a valuable resource for students and researchers in mathematics and physicists interested in exploring how their disciplines connect to general relativity.

Harmonic and Applied Analysis - From Radon Transforms to Machine Learning (Hardcover, 1st ed. 2021): Filippo De Mari, Ernesto... Harmonic and Applied Analysis - From Radon Transforms to Machine Learning (Hardcover, 1st ed. 2021)
Filippo De Mari, Ernesto De Vito
R1,708 Discovery Miles 17 080 Ships in 10 - 15 working days

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.

A Perspective on Canonical Riemannian Metrics (Hardcover, 1st ed. 2020): Giovanni Catino, Paolo Mastrolia A Perspective on Canonical Riemannian Metrics (Hardcover, 1st ed. 2020)
Giovanni Catino, Paolo Mastrolia
R3,127 Discovery Miles 31 270 Ships in 18 - 22 working days

This book focuses on a selection of special topics, with emphasis on past and present research of the authors on "canonical" Riemannian metrics on smooth manifolds. On the backdrop of the fundamental contributions given by many experts in the field, the volume offers a self-contained view of the wide class of "Curvature Conditions" and "Critical Metrics" of suitable Riemannian functionals. The authors describe the classical examples and the relevant generalizations. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.

Differential Geometry - Bundles, Connections, Metrics and Curvature (Hardcover): Clifford Henry Taubes Differential Geometry - Bundles, Connections, Metrics and Curvature (Hardcover)
Clifford Henry Taubes
R3,913 Discovery Miles 39 130 Ships in 10 - 15 working days

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects.
Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kahler geometry.
Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.

Quantitative Tamarkin Theory (Hardcover, 1st ed. 2020): Jun Zhang Quantitative Tamarkin Theory (Hardcover, 1st ed. 2020)
Jun Zhang
R984 Discovery Miles 9 840 Ships in 10 - 15 working days

This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019

Riemann Surfaces (Hardcover): Simon Donaldson Riemann Surfaces (Hardcover)
Simon Donaldson
R4,072 Discovery Miles 40 720 Ships in 10 - 15 working days

The theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic. It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas including manifold topology, global analysis, algebraic geometry, Riemannian geometry, and diverse topics in mathematical physics.
This graduate text on Riemann surface theory proves the fundamental analytical results on the existence of meromorphic functions and the Uniformisation Theorem. The approach taken emphasises PDE methods, applicable more generally in global analysis. The connection with geometric topology, and in particular the role of the mapping class group, is also explained. To this end, some more sophisticated topics have been included, compared with traditional texts at this level. While the treatment is novel, the roots of the subject in traditional calculus and complex analysis are kept well in mind.
Part I sets up the interplay between complex analysis and topology, with the latter treated informally. Part II works as a rapid first course in Riemann surface theory, including elliptic curves. The core of the book is contained in Part III, where the fundamental analytical results are proved. Following this section, the remainder of the text illustrates various facets of the more advanced theory.

Geometric Continuum Mechanics (Hardcover, 1st ed. 2020): Reuven Segev, Marcelo Epstein Geometric Continuum Mechanics (Hardcover, 1st ed. 2020)
Reuven Segev, Marcelo Epstein
R1,848 Discovery Miles 18 480 Ships in 10 - 15 working days

This contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include: Global stress and hyper-stress theories Applications of de Rham currents to singular dislocations Manifolds of mappings for continuum mechanics Kinematics of defects in solid crystals Geometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.

The Lebesgue-Stieltjes Integral - A Practical Introduction (Hardcover, 2000 ed.): M. Carter, B Van Brunt The Lebesgue-Stieltjes Integral - A Practical Introduction (Hardcover, 2000 ed.)
M. Carter, B Van Brunt
R1,873 Discovery Miles 18 730 Ships in 18 - 22 working days

While mathematics students generally meet the Riemann integral early in their undergraduate studies, those whose interests lie more in the direction of applied mathematics will probably find themselves needing to use the Lebesgue or Lebesgue-Stieltjes Integral before they have acquired the necessary theoretical background. This book is aimed at exactly this group of readers. The authors introduce the Lebesgue-Stieltjes integral on the real line as a natural extension of the Riemann integral, making the treatment as practical as possible. They discuss the evaluation of Lebesgue-Stieltjes integrals in detail, as well as the standard convergence theorems, and conclude with a brief discussion of multivariate integrals and surveys of L spaces plus some applications. The whole is rounded off with exercises that extend and illustrate the theory, as well as providing practice in the techniques.

Large Deviations and Asymptotic Methods in Finance (Hardcover, 2015 ed.): Peter K. Friz, Jim Gatheral, Archil Gulisashvili,... Large Deviations and Asymptotic Methods in Finance (Hardcover, 2015 ed.)
Peter K. Friz, Jim Gatheral, Archil Gulisashvili, Antoine Jacquier, Josef Teichmann
R4,114 Discovery Miles 41 140 Ships in 18 - 22 working days

Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.

Hardy Inequalities on Homogeneous Groups - 100 Years of Hardy Inequalities (Hardcover, 1st ed. 2019): Michael Ruzhansky,... Hardy Inequalities on Homogeneous Groups - 100 Years of Hardy Inequalities (Hardcover, 1st ed. 2019)
Michael Ruzhansky, Durvudkhan Suragan
R1,607 Discovery Miles 16 070 Ships in 10 - 15 working days

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hoermander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev Hardcover R2,722 R1,821 Discovery Miles 18 210
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders Hardcover R2,991 R2,794 Discovery Miles 27 940
Singular Semi-Riemannian Geometry
D.N. Kupeli Hardcover R2,752 Discovery Miles 27 520
L(2) Approaches in Several Complex…
Takeo Ohsawa Hardcover R3,128 Discovery Miles 31 280
Progress in Mathematical Relativity…
Alfonso Garcia-Parrado, Filipe C. Mena, … Hardcover R5,516 R4,925 Discovery Miles 49 250
Harmonic Morphisms Between Riemannian…
Paul Baird, John C. Wood Hardcover R5,496 Discovery Miles 54 960
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto Hardcover R2,920 Discovery Miles 29 200
Introduction to Arithmetic Groups
Dave Witte Morris Hardcover R718 Discovery Miles 7 180
Riemannian Holonomy Groups and…
Dominic D. Joyce Hardcover R4,116 Discovery Miles 41 160
A Treatise On The Differential Geometry…
Luther Pfahler Eisenhart Hardcover R1,124 Discovery Miles 11 240

 

Partners