0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1)
  • R250 - R500 (33)
  • R500+ (1,109)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Geometry > Differential & Riemannian geometry

Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces (Hardcover, 1994 ed.): Victor Guillemin Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces (Hardcover, 1994 ed.)
Victor Guillemin
R2,735 Discovery Miles 27 350 Ships in 18 - 22 working days

The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.

Semi-Riemannian Maps and Their Applications (Hardcover, 1999 ed.): Eduardo Garcia-Rio, D.N. Kupeli Semi-Riemannian Maps and Their Applications (Hardcover, 1999 ed.)
Eduardo Garcia-Rio, D.N. Kupeli
R2,761 Discovery Miles 27 610 Ships in 18 - 22 working days

A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.

Topics in Physical Mathematics (Hardcover, 2010 ed.): Kishore Marathe Topics in Physical Mathematics (Hardcover, 2010 ed.)
Kishore Marathe
R3,579 Discovery Miles 35 790 Ships in 18 - 22 working days

As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition's theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.

Lectures on Closed Geodesics (Hardcover, 1978 ed.): Wilhelm Klingenberg Lectures on Closed Geodesics (Hardcover, 1978 ed.)
Wilhelm Klingenberg
R2,781 Discovery Miles 27 810 Ships in 18 - 22 working days

The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.): Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier,... Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,509 Discovery Miles 35 090 Ships in 10 - 15 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Riemannian Topology and Geometric Structures on Manifolds (Hardcover, 2009 ed.): Krzysztof Galicki, Santiago R. Simanca Riemannian Topology and Geometric Structures on Manifolds (Hardcover, 2009 ed.)
Krzysztof Galicki, Santiago R. Simanca
R4,271 Discovery Miles 42 710 Ships in 18 - 22 working days

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kahler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest. "

Partial Differential Equations and Group Theory - New Perspectives for Applications (Hardcover, 1994 ed.): J.F. Pommaret Partial Differential Equations and Group Theory - New Perspectives for Applications (Hardcover, 1994 ed.)
J.F. Pommaret
R1,669 Discovery Miles 16 690 Ships in 18 - 22 working days

Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry."

Old and New Aspects in Spectral Geometry (Hardcover, 2001 ed.): M.-E. Craioveanu, Mircea Puta, Themistocles Rassias Old and New Aspects in Spectral Geometry (Hardcover, 2001 ed.)
M.-E. Craioveanu, Mircea Puta, Themistocles Rassias
R2,899 Discovery Miles 28 990 Ships in 18 - 22 working days

This work presents some classical as well as some very recent results and techniques concerning the spectral geometry corresponding to the Laplace-Beltrami operator and the Hodge-de Rham operators. It treats many topics that are not usually dealt with in this field, such as the continuous dependence of the eigenvalues with respect to the Riemannian metric in the CINFINITY-topology, and some of their consequences, such as Uhlenbeck's genericity theorem; examples of non-isometric flat tori in all dimensions greater than or equal to four; Gordon's classical technique for constructing isospectral closed Riemannian manifolds; a detailed presentation of Sunada's technique and Pesce's approach to isospectrality; Gordon and Webb's example of non-isometric convex domains in Rn (n>=4) that are isospectral for both Dirichlet and Neumann boundary conditions; the Chanillo-TrA]ves estimate for the first positive eigenvalue of the Hodge-de Rham operator, etc. Significant applications are developed, and many open problems, references and suggestions for further reading are given. Several themes for additional research are pointed out. Audience: This volume is designed as an introductory text for mathematicians and physicists interested in global analysis, analysis on manifolds, differential geometry, linear and multilinear algebra, and matrix theory. It is accessible to readers whose background includes basic Riemannian geometry and functional analysis. These mathematical prerequisites are covered in the first two chapters, thus making the book largely self-contained.

Wagner's Theory of Generalised Heaps (Hardcover, 1st ed. 2017): Christopher Hollings, Mark V. Lawson Wagner's Theory of Generalised Heaps (Hardcover, 1st ed. 2017)
Christopher Hollings, Mark V. Lawson
R2,658 Discovery Miles 26 580 Ships in 18 - 22 working days

The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.

Special Relativity - An Introduction with 200 Problems and Solutions (Hardcover, Edition.): Michael Tsamparlis Special Relativity - An Introduction with 200 Problems and Solutions (Hardcover, Edition.)
Michael Tsamparlis
R2,665 Discovery Miles 26 650 Ships in 10 - 15 working days

Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using "heavier" mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity."

Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees - Applications to Non-Archimedean... Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees - Applications to Non-Archimedean Diophantine Approximation (Hardcover, 1st ed. 2019)
Anne Broise-Alamichel, Jouni Parkkonen, Frederic Paulin
R1,977 Discovery Miles 19 770 Ships in 10 - 15 working days

This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.

Introduction to Geometry of Manifolds with Symmetry (Hardcover, 1994 ed.): V.V. Trofimov Introduction to Geometry of Manifolds with Symmetry (Hardcover, 1994 ed.)
V.V. Trofimov
R2,833 Discovery Miles 28 330 Ships in 18 - 22 working days

This volume provides an introduction to the geometry of manifolds equipped with additional structures connected with the notion of symmetry. The content is divided into five chapters. Chapter I presents the elements of differential geometry which are used in subsequent chapters. Part of the chapter is devoted to general topology, part to the theory of smooth manifolds, and the remaining sections deal with manifolds with additional structures. Chapter II is devoted to the basic notions of the theory of spaces. One of the main topics here is the realization of affinely connected symmetric spaces as totally geodesic submanifolds of Lie groups. In Chapter IV, the most important classes of vector bundles are constructed. This is carried out in terms of differential forms. The geometry of the Euler class is of special interest here. Chapter V presents some applications of the geometrical concepts discussed. In particular, an introduction to modern methods of integration of nonlinear differential equations is given, as well as considerations involving the theory of hydrodynamic-type Poisson brackets with connections to interesting algebraic structures. For mathematicians and mathematical physicists wishing to obtain a good introduction to the geometry of manifolds. This volume can also be recommended as a supplementary graduate text.

Fixed Point Theory in Distance Spaces (Hardcover, 2014 ed.): William Kirk, Naseer Shahzad Fixed Point Theory in Distance Spaces (Hardcover, 2014 ed.)
William Kirk, Naseer Shahzad
R2,445 R1,830 Discovery Miles 18 300 Save R615 (25%) Ships in 10 - 15 working days

This is a monograph on fixed point theory, covering the purely metric aspects of the theory-particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler's well known set-valued extension of that theorem, the extension of Banach's theorem to nonexpansive mappings, and Caristi's theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi's theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.

Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications (Hardcover, 1996 ed.): Krishan L. Duggal, Aurel Bejancu Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications (Hardcover, 1996 ed.)
Krishan L. Duggal, Aurel Bejancu
R5,740 Discovery Miles 57 400 Ships in 18 - 22 working days

This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.

Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.): Stig I. Andersson, Michel L Lapidus Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.)
Stig I. Andersson, Michel L Lapidus
R1,516 Discovery Miles 15 160 Ships in 18 - 22 working days

most polynomial growth on every half-space Re (z)::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are A-P-S] and Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation' (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(., t) = V(t)uoU. Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* (r)E), locally given by 00 K(x, y; t) = L>-IAk( k (r) 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2:: >- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op."

Elementary Topics in Differential Geometry (Hardcover, 1st ed. 1979. Corr. 4th printing 1994): J.A. Thorpe Elementary Topics in Differential Geometry (Hardcover, 1st ed. 1979. Corr. 4th printing 1994)
J.A. Thorpe
R2,344 Discovery Miles 23 440 Ships in 18 - 22 working days

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of 3. The student's preliminary understanding of higher dimensions is not cultivated."

Special Metrics and Group Actions in Geometry (Hardcover, 1st ed. 2017): Simon G. Chiossi, Anna Fino, Emilio Musso, Fabio... Special Metrics and Group Actions in Geometry (Hardcover, 1st ed. 2017)
Simon G. Chiossi, Anna Fino, Emilio Musso, Fabio Podesta, Luigi Vezzoni
R3,776 Discovery Miles 37 760 Ships in 10 - 15 working days

The volume is a follow-up to the INdAM meeting "Special metrics and quaternionic geometry" held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5-8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon's profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics (Hardcover, 1996 ed.): Yuri E. Gliklikh Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics (Hardcover, 1996 ed.)
Yuri E. Gliklikh
R2,761 Discovery Miles 27 610 Ships in 18 - 22 working days

The geometrical methods in modem mathematical physics and the developments in Geometry and Global Analysis motivated by physical problems are being intensively worked out in contemporary mathematics. In particular, during the last decades a new branch of Global Analysis, Stochastic Differential Geometry, was formed to meet the needs of Mathematical Physics. It deals with a lot of various second order differential equations on finite and infinite-dimensional manifolds arising in Physics, and its validity is based on the deep inter-relation between modem Differential Geometry and certain parts of the Theory of Stochastic Processes, discovered not so long ago. The foundation of our topic is presented in the contemporary mathematical literature by a lot of publications devoted to certain parts of the above-mentioned themes and connected with the scope of material of this book. There exist some monographs on Stochastic Differential Equations on Manifolds (e. g. [9,36,38,87]) based on the Stratonovich approach. In [7] there is a detailed description of It6 equations on manifolds in Belopolskaya-Dalecky form. Nelson's book [94] deals with Stochastic Mechanics and mean derivatives on Riemannian Manifolds. The books and survey papers on the Lagrange approach to Hydrodynamics [2,31,73,88], etc. , give good presentations of the use of infinite-dimensional ordinary differential geometry in ideal hydrodynamics. We should also refer here to [89,102], to the previous books by the author [53,64], and to many others.

Constant Mean Curvature Surfaces with Boundary (Hardcover, 2013 ed.): Rafael Lopez Constant Mean Curvature Surfaces with Boundary (Hardcover, 2013 ed.)
Rafael Lopez
R3,410 Discovery Miles 34 100 Ships in 10 - 15 working days

The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.

While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of compact surfaces with boundaries, narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.

The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems."

CR Submanifolds of Complex Projective Space (Hardcover, 2010 ed.): Mirjana Djoric, Masafumi Okumura CR Submanifolds of Complex Projective Space (Hardcover, 2010 ed.)
Mirjana Djoric, Masafumi Okumura
R1,501 Discovery Miles 15 010 Ships in 18 - 22 working days

Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.

Geometry and Topology of Manifolds - 10th China-Japan Conference 2014 (Hardcover, 1st ed. 2016): Akito Futaki, Reiko Miyaoka,... Geometry and Topology of Manifolds - 10th China-Japan Conference 2014 (Hardcover, 1st ed. 2016)
Akito Futaki, Reiko Miyaoka, Zizhou Tang, Weiping Zhang
R3,466 Discovery Miles 34 660 Ships in 10 - 15 working days

Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincare conjecture, the Yau-Tian-Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger-Yau-Zaslow conjecture on mirror symmetry, the relative Yau-Tian-Donaldson conjecture in Kahler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.

Advances in Geometry - Volume 1 (Hardcover, 1999 ed.): Jean-Luc Brylinski, Ranee Brylinski, Victor Nistor Advances in Geometry - Volume 1 (Hardcover, 1999 ed.)
Jean-Luc Brylinski, Ranee Brylinski, Victor Nistor
R2,875 Discovery Miles 28 750 Ships in 18 - 22 working days

This book is an outgrowth of the activities of the Center for Geometry and Mathematical Physics (CGMP) at Penn State from 1996 to 1998. The Center was created in the Mathematics Department at Penn State in the fall of 1996 for the purpose of promoting and supporting the activities of researchers and students in and around geometry and physics at the university. The CGMP brings many visitors to Penn State and has ties with other research groups; it organizes weekly seminars as well as annual workshops The book contains 17 contributed articles on current research topics in a variety of fields: symplectic geometry, quantization, quantum groups, algebraic geometry, algebraic groups and invariant theory, and character istic classes. Most of the 20 authors have talked at Penn State about their research. Their articles present new results or discuss interesting perspec tives on recent work. All the articles have been refereed in the regular fashion of excellent scientific journals. Symplectic geometry, quantization and quantum groups is one main theme of the book. Several authors study deformation quantization. As tashkevich generalizes Karabegov's deformation quantization of Kahler manifolds to symplectic manifolds admitting two transverse polarizations, and studies the moment map in the case of semisimple coadjoint orbits. Bieliavsky constructs an explicit star-product on holonomy reducible sym metric coadjoint orbits of a simple Lie group, and he shows how to con struct a star-representation which has interesting holomorphic properties."

Geodesic Flows (Hardcover, 1999 ed.): Gabriel P. Paternain Geodesic Flows (Hardcover, 1999 ed.)
Gabriel P. Paternain
R2,739 Discovery Miles 27 390 Ships in 18 - 22 working days

The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (Hardcover, 2007 ed.): Luca Capogna,... An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (Hardcover, 2007 ed.)
Luca Capogna, Donatella Danielli, Scott D. Pauls, Jeremy Tyson
R3,712 Discovery Miles 37 120 Ships in 10 - 15 working days

This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.

Theory of Multicodimensional (n+1)-Webs (Hardcover, 1988 ed.): Vladislav V. Goldberg Theory of Multicodimensional (n+1)-Webs (Hardcover, 1988 ed.)
Vladislav V. Goldberg
R1,669 Discovery Miles 16 690 Ships in 18 - 22 working days

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bifurcation in Autonomous and…
Marat Akhmet, Ardak Kashkynbayev Hardcover R2,722 R1,821 Discovery Miles 18 210
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura Hardcover R2,671 Discovery Miles 26 710
Eigenvalues in Riemannian Geometry…
Isaac Chavel Hardcover R1,431 Discovery Miles 14 310
Geometric Complex Analysis - In Honor of…
Jisoo Byun, Hong Rae Cho, … Hardcover R4,061 Discovery Miles 40 610
Handbook of Differential Geometry
Franki J.e. Dillen, Leopold C.a. Verstraelen Hardcover R5,379 Discovery Miles 53 790
Algebraic Models in Geometry
Yves Felix, John Oprea, … Hardcover R3,772 Discovery Miles 37 720
Lorentzian Geometry and Related Topics…
Maria A. Canadas-Pinedo, Joseluis Flores, … Hardcover R4,185 R3,384 Discovery Miles 33 840
Introduction To The Geometrical Analysis…
Stefano Biagi, Andrea Bonfiglioli Paperback R1,960 Discovery Miles 19 600
Information Geometry and Its…
Shun-Ichi Amari Hardcover R4,142 Discovery Miles 41 420
Cartan Geometries and their Symmetries…
Mike Crampin, David Saunders Hardcover R2,991 R2,794 Discovery Miles 27 940

 

Partners