![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Organic Ferroelectric Materials and Applications aims to bring an up-to date account of the field with discussion of recent findings. This book presents an interdisciplinary resource for scientists from both academia and industry on the science and applications of molecular organic piezo- and ferroelectric materials. The book addresses the fundamental science of ferroelectric polymers, molecular crystals, supramolecular networks, and other key and emerging organic materials systems. It touches on important processing and characterization methods and provides an overview of current and emerging applications of organic piezoelectrics and ferroelectrics for electronics, sensors, energy harvesting, and biomedical technologies. Organic Ferroelectric Materials and Applications will be of special interest to those in academia or industry working in materials science, engineering, chemistry, and physics.
Ultrawide Bandgap Semiconductors, Volume 107 in the Semiconductors and Semimetals series, highlights the latest breakthrough in fundamental science and technology development of ultrawide bandgap (UWBG) semiconductor materials and devices based on gallium oxide, aluminium nitride, boron nitride, and diamond. It includes important topics on the materials growth, characterization, and device applications of UWBG materials, where electronic, photonic, thermal and quantum properties are all thoroughly explored.
Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics addresses the complexity of electromagnetic responses from arrays of dielectric resonators, which are often omitted from consideration when using simplified metamaterials concepts. The book's authors present a thorough consideration of dielectric resonances in different environments which is needed to design optical and photonic devices. Dielectric metamaterials and photonic crystals are compared, with their effects analyzed. Design approaches and examples of designs for invisibility cloaks based on artificial media are also included. Current challenge of incorporating artificial materials into transformation optics-based and photonics devices are also covered.
Optical Communications in the 5G Era provides an up-to-date overview of the emerging optical communication technologies for 5G next-generation wireless networks. It outlines the emerging applications of optical networks in future wireless networks, state-of-the-art optical communication technologies, and explores new R&D opportunities in the field of converged fixed-mobile networks. Optical Communications in the 5G Era is an ideal reference for university researchers, graduate students, and industry R&D engineers in optical communications, photonics, and mobile and wireless communications who need a broad and deep understanding of modern optical communication technologies, systems, and networks that are fundamental to 5G and beyond.
Topological Insulator and Related Topics, Volume 108 in the Semiconductors and Semimental series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as Majorana modes at the ends of one dimensional topological superconductors, Optical/electronic properties of Weyl semimetals, High magnetic fields to unveil the electronic structure, magnetic field-induced transitions, and unconventional transport properties of topological semimetals, New aspects of strongly correlated superconductivity in the nearly flat-band regime, Anomalous transport properties in topological semimetals, Pseudo-gauge field and piezo-electromagnetic response in topological materials, Topological Gapped States Protected by Spatial Symmetries, and more.
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development.
Deep Learning for Chest Radiographs enumerates different strategies implemented by the authors for designing an efficient convolution neural network-based computer-aided classification (CAC) system for binary classification of chest radiographs into "Normal" and "Pneumonia." Pneumonia is an infectious disease mostly caused by a bacteria or a virus. The prime targets of this infectious disease are children below the age of 5 and adults above the age of 65, mostly due to their poor immunity and lower rates of recovery. Globally, pneumonia has prevalent footprints and kills more children as compared to any other immunity-based disease, causing up to 15% of child deaths per year, especially in developing countries. Out of all the available imaging modalities, such as computed tomography, radiography or X-ray, magnetic resonance imaging, ultrasound, and so on, chest radiographs are most widely used for differential diagnosis between Normal and Pneumonia. In the CAC system designs implemented in this book, a total of 200 chest radiograph images consisting of 100 Normal images and 100 Pneumonia images have been used. These chest radiographs are augmented using geometric transformations, such as rotation, translation, and flipping, to increase the size of the dataset for efficient training of the Convolutional Neural Networks (CNNs). A total of 12 experiments were conducted for the binary classification of chest radiographs into Normal and Pneumonia. It also includes in-depth implementation strategies of exhaustive experimentation carried out using transfer learning-based approaches with decision fusion, deep feature extraction, feature selection, feature dimensionality reduction, and machine learning-based classifiers for implementation of end-to-end CNN-based CAC system designs, lightweight CNN-based CAC system designs, and hybrid CAC system designs for chest radiographs. This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry.
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics.
MicroLEDs', Volume 106 is currently recognized as the ultimate display technology and one of the fastest-growing technologies in the world as technology giants utilize it on a wide-ranging set of products. This volume combines contributions from MicroLED pioneers and world's leading experts in the field who focus on the MicroLED development, current cutting-edge technologies of pursuing for realizing MicroLED large flat panel displays and televisions, virtual reality and 3D displays, light source for LI-FI data communications, neural interface and optogenetics, and future MicroLED technology trends.
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human-robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: Introduces several new contributions to the representation and management of humans in autonomous robotic systems; Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; Engages with the potential repercussions of cognitive computing and HRI in the real world.
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing.
Fully Depleted Silicon-On-Insulator provides an in-depth presentation of the fundamental and pragmatic concepts of this increasingly important technology. There are two main technologies in the marketplace of advanced CMOS circuits: FinFETs and fully depleted silicon-on-insulators (FD-SOI). The latter is unchallenged in the field of low-power, high-frequency, and Internet-of-Things (IOT) circuits. The topic is very timely at research and development levels. Compared to existing books on SOI materials and devices, this book covers exhaustively the FD-SOI domain. Fully Depleted Silicon-On-Insulator is based on the expertise of one of the most eminent individuals in the community, Dr. Sorin Cristoloveanu, an IEEE Andrew Grove 2017 award recipient "For contributions to silicon-on-insulator technology and thin body devices." In the book, he shares key insights on the technological aspects, operation mechanisms, characterization techniques, and most promising emerging applications. Early praise for Fully Depleted Silicon-On-Insulator "It is an excellent written guide for everyone who would like to study SOI deeply, specially focusing on FD-SOI." --Dr. Katsu Izumi, Formerly at NTT Laboratories and then at Osaka Prefecture University, Japan "FDSOI technology is poised to catch an increasingly large portion of the semiconductor market. This book fits perfectly in this new paradigm [...] It covers many SOI topics which have never been described in a book before." --Professor Jean-Pierre Colinge, Formerly at TSMC and then at CEA-LETI, Grenoble, France "This book, written by one of the true experts and pioneers in the silicon-on-insulator field, is extremely timely because of the growing footprint of FD-SOI in modern silicon technology, especially in IoT applications. Written in a delightfully informal style yet comprehensive in its coverage, the book describes both the device physics underpinning FD-SOI technology and the cutting-edge, perhaps even futuristic devices enabled by it." --Professor Alexander Zaslavsky, Brown University, USA "A superbly written book on SOI technology by a master in the field." --Professor Yuan Taur, University of California, San Diego, USA "The author is a world-top researcher of SOI device/process technology. This book is his masterpiece and important for the FD-SOI archive. The reader will learn much from the book." --Professor Hiroshi Iwai, National Yang Ming Chiao Tung University, Taiwan From the author "It is during our global war against the terrifying coalition of corona and insidious computer viruses that this book has been put together. Continuous enlightenment from FD-SOI helped me cross this black and gray period. I shared a lot of myself in this book. The rule of the game was to keep the text light despite the heavy technical content. There are even tentative FD-SOI hieroglyphs on the front cover, composed of curves discussed in the book."
Ternary Quantum Dots: Synthesis, Properties, and Applications reviews the latest advances in ternary (I-III-VI) chalcopyrite quantum dots (QDs), along with their synthesis, properties and applications. Sections address the fundamental key concepts of ternary quantum dots, progress in synthesis strategies (i.e., organic and aqueous synthesis), and characterization methods (i.e., transmission electron microscopy, dynamic light scattering, etc.). Properties of ternary quantum dots are comprehensively reviewed, including optical, chemical and physical properties. The factors and mechanisms of the cytotoxicity of ternary quantum dot-based nanomaterials are also described. Since ternary chalcopyrite quantum dots are less toxic and more environmentally benign than conventional binary II-VI chalcogenide quantum dots, they are being investigated to replace conventional quantum dots in a range of applications. Thus, this book reviews QDs in various applications, such as solar cells, photocatalytic, sensors and bio-applications.
Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism.
Advances in Imaging and Electron Physics, Volume 218 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more.
Thermoelectricity and Advanced Thermoelectric Materials reviews emerging thermoelectric materials, including skutterudites, clathrates, and half-Heusler alloys. In addition, the book discusses a number of oxides and silicides that have promising thermoelectric properties. Because 2D materials with high figures of merit have emerged as promising candidates for thermoelectric applications, this book presents an updated introduction to the field of thermoelectric materials, including recent advances in materials synthesis, device modeling, and design. Finally, the book addresses the theoretical difficulties and methodologies of computing the thermoelectric properties of materials that can be used to understand and predict highly efficient thermoelectric materials. This book is a key reference for materials scientists, physicists, and engineers in energy. |
You may like...
Effective Dynamics of Stochastic Partial…
Jinqiao Duan, Wei Wang
Hardcover
R1,816
Discovery Miles 18 160
Finer Thermodynamic Formalism - Distance…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,152
Discovery Miles 41 520
Differential Equations and Numerical…
Valarmathi Sigamani, John J.H. Miller, …
Hardcover
Finite Volumes for Complex Applications…
Jurgen Fuhrmann, Mario Ohlberger, …
Hardcover
R4,146
Discovery Miles 41 460
Model Reduction of Parametrized Systems
Peter Benner, Mario Ohlberger, …
Hardcover
R4,602
Discovery Miles 46 020
|