![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The book's chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. This book is an ideal reference for R&D engineers working on developing next generation optical components, scientists involved with research on fiber amplifiers and lasers, graduate students, and researchers working in the fields of optical communications and quantum information.
This book highlights recent research advances on biometrics using new methods such as deep learning, nonlinear graph embedding, fuzzy approaches, and ensemble learning. Included are special biometric technologies related to privacy and security issues, such as cancellable biometrics and soft biometrics. The book also focuses on several emerging topics such as big data issues, internet of things, medical biometrics, healthcare, and robot-human interactions. The authors show how these new applications have triggered a number of new biometric approaches. They show, as an example, how fuzzy extractor has become a useful tool for key generation in biometric banking, and vein/heart rates from medical records can also be used to identify patients. The contributors cover the topics, their methods, and their applications in depth.
Thermoelectric Energy Conversion: Theories and Mechanisms, Materials, Devices, and Applications provides readers with foundational knowledge on key aspects of thermoelectric conversion and reviews future prospects. Sections cover the basic theories and mechanisms of thermoelectric physics, the chemical and physical aspects of classical to brand-new materials, measurement techniques of thermoelectric conversion properties from the materials to modules and current research, including the physics, crystallography and chemistry aspects of processing to produce thermoelectric devices. Finally, the book discusses thermoelectric conversion applications, including cooling, generation, energy harvesting, space, sensor and other emerging areas of applications.
Diamond for Quantum Applications Part Two, Volume 104, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics including Color center formation by deterministic single ion implantation, Diamond and Its Investigation by Advanced TEM, Fundaments of photo-electric readout of spin states in diamond, Integrated quantum photonic circuits with polycrystalline diamond, Diamond Membranes, and Diamond nanophotonic and opt mechanics.
Power Electronics and Motor Drive Systems is designed to aid electrical engineers, researchers, and students to analyze and address common problems in state-of-the-art power electronics technologies. Author Stefanos Manias supplies a detailed discussion of the theory of power electronics circuits and electronic power conversion technology systems, with common problems and methods of analysis to critically evaluate results. These theories are reinforced by simulation examples using well-known and widely available software programs, including SPICE, PSIM, and MATLAB/SIMULINK. Manias expertly analyzes power electronic circuits with basic power semiconductor devices, as well as the new power electronic converters. He also clearly and comprehensively provides an analysis of modulation and output voltage, current control techniques, passive and active filtering, and the characteristics and gating circuits of different power semiconductor switches, such as BJTs, IGBTs, MOSFETs, IGCTs, MCTs and GTOs.
Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices). Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence.
Advanced Distributed Consensus for Multiagent Systems contributes to the further development of advanced distributed consensus methods for different classes of multiagent methods. The book expands the field of coordinated multiagent dynamic systems, including discussions on swarms, multi-vehicle and swarm robotics. In addition, it addresses advanced distributed methods for the important topic of multiagent systems, with a goal of providing a high-level treatment of consensus to different versions while preserving systematic analysis of the material and providing an accounting to math development in a unified way. This book is suitable for graduate courses in electrical, mechanical and computer science departments. Consensus control in multiagent systems is becoming increasingly popular among researchers due to its applicability in analyzing and designing coordination behaviors among agents in multiagent frameworks. Multiagent systems have been a fascinating subject amongst researchers as their practical applications span multiple fields ranging from robotics, control theory, systems biology, evolutionary biology, power systems, social and political systems to mention a few.
An in-depth look at the luminescence of phosphor materials for applications in optical devices, sensors, and medical technologies. Optical Properties of Phosphate and Pyrophosphate Compounds gives a broad introduction to pyrophosphates and phosphate-based phosphors, including their fundamental properties, material composition, synthesis methods, characterization techniques, and applications in optical devices and technologies. The text describes the development of the materials' shape and size, as well as crucial characterization techniques for key applications. Additionally, it includes essential information about recently used single and mixed cations pyrophosphate and phosphate compounds. This book is suitable for researchers working in materials science, engineering, materials chemistry, and physics. It may also be helpful to engineers and chemists working in R&D for solid state lighting.
This reference, written by leading authorities in the field, gives basic theory, implementation details, advanced research, and applications of RF and microwave in healthcare and biosensing. It first provides a solid understanding of the fundamentals with coverage of the basics of microwave engineering and the interaction between electromagnetic waves and biomaterials. It then presents the state-of-the-art development in microwave biosensing, implantable devices -including applications of microwave technology for sensing biological tissues - and medical diagnosis, along with applications involving remote patient monitoring. this book is an ideal reference for RF and microwave engineer working on, or thinking of working on, the applications of RF and Microwave technology in medicine and biology. Learn: The fundamentals of RF and microwave engineering in healthcare and biosensing How to combine biological and medical aspects of the field with underlying engineering concepts How to implement microwave biosensing for material characterization and cancer diagnosis Applications and functioning of wireless implantable biomedical devices and microwave non-contact biomedical radars How to combine devices, systems, and methods for new practical applications
Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
Advances in Imaging and Electron Physics, Volume 216, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Reliability has always been a major concern in designing computing systems. However, the increasing complexity of such systems has led to a situation where efforts for assuring reliability have become extremely costly, both for the design of solutions for the mitigation of possible faults, and for the reliability assessment of such techniques. Cross-layer reliability is fast becoming the preferred solution. In a cross-layer resilient system, physical and circuit level techniques can mitigate low-level faults. Hardware redundancy can be used to manage errors at the hardware architecture layer. Eventually, software implemented error detection and correction mechanisms can manage those errors that escaped the lower layers of the stack. This book presents state-of-the-art solutions for increasing the resilience of computing systems, both at single levels of abstraction and multi-layers. The book begins by addressing design techniques to improve the resilience of computing systems, covering the logic layer, the architectural layer and the software layer. The second part of the book focuses on cross-layer resilience, including coverage of physical stress, reliability assessment approaches, fault injection at the ISA level, analytical modelling for cross-later resiliency, and stochastic methods. Cross-Layer Reliability of Computing Systems is a valuable resource for researchers, postgraduate students and professional computer architects focusing on the dependability of computing systems.
Wearable Sensors: Fundamentals, Implementation and Applications has been written by a collection of experts in their field, who each provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a fantastic addition to the library of any engineers working in this field. Wearable Sensors covers a wide variety of topics associated with development and applications of wearable sensors. It also provides an overview and a coherent summary of many aspects of wearable sensor technology. Both professionals in industries and academic researchers need this package of information in order to learn the overview and each specific technology at the same time. This book includes the most current knowledge on the advancement of light-weight hardware, energy harvesting, signal processing, and wireless communications and networks. Practical problems with smart fabrics, biomonitoring and health informatics are all addressed, plus end user centric design, ethical and safety issues. The new edition is completely reviewed by key figures in the field, who offer authoritative and comprehensive information on the various topics. A new feature for the second edition is the incorporation of key background information on topics to allow the less advanced user access to the field and to make the title more of an auto-didactic book for undergraduates.
Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. Chapters in this new release cover Characterization of nanomaterials properties using FE-TEM, Cold field-emission electron sources: From higher brightness to ultrafast beams, Every electron counts: Towards the development of aberration optimized and aberration corrected electron sources, and more. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs.
In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory", "Adaptive Control and Neuroscience", "Adaptive Learning Algorithms", "Cyber-Physical Systems and Cooperative Control", "Applications". The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. * Collection of chapters from several well-known professors and researchers that will showcase their recent work * Presents different state-of-the-art control approaches and theory for complex systems * Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams * Real system examples and figures throughout, make ideas concrete
Advances in Imaging and Electron Physics, Volume 215, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Nonlinear Optics, Fourth Edition, is a tutorial-based introduction to nonlinear optics that is suitable for graduate-level courses in electrical and electronic engineering, and for electronic and computer engineering departments, physics departments, and as a reference for industry practitioners of nonlinear optics. It will appeal to a wide audience of optics, physics and electrical and electronic engineering students, as well as practitioners in related fields, such as materials science and chemistry.
Power Electronics and Motor Drives: Advances and Trends, Second Edition is the perfect resource to keep the electrical engineer up-to-speed on the latest advancements in technologies, equipment and applications. Carefully structured to include both traditional topics for entry-level and more advanced applications for the experienced engineer, this reference sheds light on the rapidly growing field of power electronic operations. New content covers converters, machine models and new control methods such as fuzzy logic and neural network control. This reference will help engineers further understand recent technologies and gain practical understanding with its inclusion of many industrial applications. Further supported by a glossary per chapter, this book gives engineers and researchers a critical reference to learn from real-world examples and make future decisions on power electronic technology and applications.
The current literature on dynamic systems is quite comprehensive, and system theory's mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.
|
You may like...
Handbook of Research on Swarm…
Siddhartha Bhattacharyya, Paramartha Dutta
Hardcover
R8,458
Discovery Miles 84 580
Electrical Education Guide - Teacher's…
Alexander M Cagnola
Hardcover
|