![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications.
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
Optical Holography: Materials, Theory and Applications provides researchers the fundamentals of holography through diffraction optics and an overview of the most relevant materials and applications, ranging from computer holograms to holographic data storage. Dr. Pierre Blanche leads a team of thought leaders in academia and industry in this practical reference for researchers and engineers in the field of holography. This book presents all the information readers need in order to understand how holographic techniques can be applied to a variety of applications, the benefits of those techniques, and the materials that enable these technologies. Researchers and engineers will gain comprehensive knowledge on how to select the best holographic techniques for their needs.
Solution Methods for Metal Oxide Nanostructures reviews solution processes that are used for synthesizing 1D, 2D and 3D metal oxide nanostructures in either thin film or in powder form for various applications. Wet-chemical synthesis methods deal with chemical reactions in the solution phase using precursors at proper experimental conditions. Wet-chemical synthesis routes offer a high degree of controllability and reproducibility for 2D nanomaterial fabrication. Solvothermal synthesis, template synthesis, self-assembly, oriented attachment, hot-injection, and interface-mediated synthesis are the main wet-chemical synthesis routes for 2D nanomaterials. Solution Methods for Metal Oxide Nanostructures also addresses the thin film deposition metal oxides nanostructures, which plays a very important role in many areas of chemistry, physics and materials science. Each chapter includes information on a key solution method and their application in the design of metal oxide nanostructured materials with optimized properties for important applications. The pros and cons of the solution method and their significance and future scope is also discussed in each chapter. Readers are provided with the fundamental understanding of the key concepts of solution synthesis methods for fabricating materials and the information needed to help them select the appropriate method for the desired application.
Semiconductors and Modern Electronics is a brief introduction to the physics behind semiconductor technologies. Chuck Winrich, a physics professor at Babson College, explores the topic of semiconductors from a qualitative approach to understanding the theories and models used to explain semiconductor devices. Applications of semiconductors are explored and understood through the models developed in the book. The qualitative approach in this book is intended to bring the advanced ideas behind semiconductors to the broader audience of students who will not major in physics. Much of the inspiration for this book comes from Dr. Winrich's experience teaching a general electronics course to students majoring in business. The goal of that class, and this book, is to bring forward the science behind semiconductors, and then to look at how that science affects the lives of people.
Robots have come a long way thanks to advances in sensing and computer vision technologies and can be found today in healthcare, medicine and industry. Researchers have been looking at providing them with senses such as the ability to see, smell, hear and perceive touch in order to mimic and interact with humans and their surrounding environments. Topics covered in this edited book include various types of sensors used in robotics, sensing schemes (e-skin, tactile skin, e-nose, neuromorphic vision and touch), sensing technologies and their applications including healthcare, prosthetics, robotics and wearables. This book will appeal to researchers, scientists, engineers, and graduate and advanced students working in robotics, sensor technologies and electronics, and their applications in robotics, haptics, prosthetics, wearable and interactive systems, cognitive engineering, neuro-engineering, computational neuroscience, medicine and healthcare technologies.
Advances in Imaging and Electron Physics, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Industry 4.0 and the subsequent automation and digitalization of processes, including the tighter integration of machine-machine and human-machine intercommunication and collaboration, is adding additional complexity to future systems design and the capability to simulate, optimize, and adapt. Current solutions lack the ability to capture knowledge, techniques, and methods to create a sustainable and intelligent nerve system for enterprise systems. With the ability to innovate new designs and solutions, as well as automate processes and decision-making capabilities with heterogenous and holistic views of current and future challenges, there can be an increase in productivity and efficiency through sustainable automation. Therefore, better understandings of the underpinning knowledge and expertise of sustainable automation that can create a sustainable cycle that drives optimal automation and innovation in the field is needed Driving Innovation and Productivity Through Sustainable Automation enhances the understanding and the knowledge for the new ecosystems emerging in the Fourth Industrial Revolution. The chapters provide the knowledge and understanding of current challenges and new capabilities and solutions having been researched, developed, and applied within the industry to drive sustainable automation for innovation and productivity. This book is ideally intended for managers, executives, IT specialists, practitioners, stakeholders, researchers, academicians, and students who are interested in the current research on sustainable automation.
Time domain modeling is a fascinating world which brings together several complex phenomena and methods of essential interest to engineers. This book is a reference guide which discusses the most advanced time-domain modeling methods and applications in electromagnetics and electrical engineering. The book starts by clearly explaining why time-domain modeling may be worth doing; then, it provides guidelines about why some choices must be made among the principal modeling approaches and next guides the reader through the state of the art in time domain modeling, concerning either numerical and analytical methods, and applications. Finally, it highlights areas for future time-domain modeling research. The book is a collection of chapters written by leading research groups in the fields, following a logical development set out by the editor. Topics covered include finite element methods in time domain with applications to low-frequency problems; transient analysis of scattering from composite objects using late-time stable TDIEs; the transmission-line modeling method, partial element equivalent circuit method in time-domain; unconditionally stable time-domain methods; time-domain linear macromodeling, analytical techniques for transient analysis; the application of the finite-difference time-domain (FDTD) technique to lightning studies; modeling of lightning and its interaction with overhead conductors; transient behaviour of grounding systems; and statistics of electromagnetic reverberation chambers and their simulation through time domain modeling.
III-Nitride Electronic Devices, Volume 102, emphasizes two major technical areas advanced by this technology: radio frequency (RF) and power electronics applications. The range of topics covered by this book provides a basic understanding of materials, devices, circuits and applications while showing the future directions of this technology. Specific chapters cover Electronic properties of III-nitride materials and basics of III-nitride HEMT, Epitaxial growth of III-nitride electronic devices, III-nitride microwave power transistors, III-nitride millimeter wave transistors, III-nitride lateral transistor power switch, III-nitride vertical devices, Physics-Based Modeling, Thermal management in III-nitride HEMT, RF/Microwave applications of III-nitride transistor/wireless power transfer, and more.
2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications.
Graphene Extraction from Waste: A Sustainable Synthesis Approach for Graphene and its Derivatives introduces readers to strategies of graphene extraction from waste, an important advance in graphene material development to support the low-cost and large-scale production of this valuable material. The book compares the various green synthesis routes for graphene materials and its derivatives, with a view on environmental consequences, cost-effectiveness, scalability, possible health hazards and toxicity. Other sections discuss different categories of waste, such as plastic waste, agricultural waste and household waste and the specific considerations of deriving graphene from these sources. Throughout the book, attention is paid to the potential applications of graphene-derived from waste, including challenges and emerging strategies. The book is suitable for researchers and practitioners in research and development in industry who work in the disciplines of materials science and engineering, green chemistry and sustainability.
Metal Halide Perovskites for Generation, Manipulation and Detection of Light covers the current state and future prospects of lead halide perovskite photonics and photon sources, both from an academic and industrial point-of-view. Advances in metal halide perovskite photon sources (lasers) based on thin films, microcrystals and nanocrystals are comprehensively reviewed, with leading experts contributing current advances in theory, fundamental concepts, fabrication techniques, experiments and other important research innovations. This book is suitable for graduate students, researchers, scientists and engineers in academia and R&D in industry working in the disciplines of materials science and engineering.
Advances in Imaging and Electron Physics, Volume 212, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book.
Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences. |
You may like...
Strategic Business Models to Support…
Luisa Cagica Carvalho, Lurdes Calisto, …
Hardcover
R6,696
Discovery Miles 66 960
Working Wives and Dual-Earner Families
Bobye J. Riney, Rose Rubin
Hardcover
R2,044
Discovery Miles 20 440
Testing and Securing Web Applications
Ravi Das, Greg Johnson
Paperback
R1,663
Discovery Miles 16 630
The Oxford Handbook of Social Networks
Ryan Light, James Moody
Hardcover
R3,698
Discovery Miles 36 980
|