![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Laser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of materials and recent advances in modeling of laser-related phenomena, with the bulk of the book focusing on current and emerging (beyond-CMOS) applications. Reviewed applications include laser annealing of CMOS, group IV semiconductors, superconducting materials, photonic materials, 2D materials. This comprehensive book is ideal for post-graduate students, new entrants, and experienced researchers in academia, research and development in materials science, physics and engineering.
Thermoelectricity and Advanced Thermoelectric Materials reviews emerging thermoelectric materials, including skutterudites, clathrates, and half-Heusler alloys. In addition, the book discusses a number of oxides and silicides that have promising thermoelectric properties. Because 2D materials with high figures of merit have emerged as promising candidates for thermoelectric applications, this book presents an updated introduction to the field of thermoelectric materials, including recent advances in materials synthesis, device modeling, and design. Finally, the book addresses the theoretical difficulties and methodologies of computing the thermoelectric properties of materials that can be used to understand and predict highly efficient thermoelectric materials. This book is a key reference for materials scientists, physicists, and engineers in energy.
Quantitative Atomic-Resolution Electron Microscopy, Volume 217, the latest release in the Advances in Imaging and Electron Physics series merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods. Chapters in this release include Statistical parameter estimation theory, Efficient fitting algorithm, Statistics-based atom counting , Atom column detection, Optimal experiment design for nanoparticle atom-counting from ADF STEM images, and more.
MicroLEDs', Volume 106 is currently recognized as the ultimate display technology and one of the fastest-growing technologies in the world as technology giants utilize it on a wide-ranging set of products. This volume combines contributions from MicroLED pioneers and world's leading experts in the field who focus on the MicroLED development, current cutting-edge technologies of pursuing for realizing MicroLED large flat panel displays and televisions, virtual reality and 3D displays, light source for LI-FI data communications, neural interface and optogenetics, and future MicroLED technology trends.
Mathematical Modelling of Swimming Soft Microrobots presents a theoretical framework for modelling of soft microrobotic systems based on resistive-force theory. Microorganisms are highly efficient at swimming regardless of the rheological and physical properties of the background fluids. This efficiency has inspired researchers and Engineers to develop microrobots that resemble the morphology and swimming strategies of microorganisms. The ultimate goal of this book is threefold: first, to relate resistive-force theory to externally and internally actuated microrobotic systems; second, to enable the readers to develop numerical models of a wide range of microrobotic systems; third, to enable the reader to optimize the design of the microrobot to enhance its swimming efficiency.
Mechanics of Smart Magneto-electro-elastic Nanostructures provides mathematical models for buckling and vibration analysis of flexoelectric and magneto-electro-elastic nanostructures under thermal environment effects. Analytical results are presented in each chapter based on changes in different parameters, including various electric and magnetic potential, non-local parameters or different boundary conditions and their effects on vibration and buckling behavior on nanobeams and nanoplates. Key characteristics of smart materials and their response to external factors are presented, including size-dependency of nanostructures, effect of various gradient indexes, thermal environment effects, and effects of elastic foundation.
The use of MEMS resonators for signal processing is relatively new and has the potential to change the topology of newer generation circuits. New materials, design and fabrication processes, and integration with conventional circuitry will need to be considered. This book explores the challenges and opportunities of developing circuits with MEMS resonator filters. The replacement of classical electrical components with electromechanical components is explored in this book, and the specific properties of MEMS resonators required in various frequency ranges are discussed. Materials and their selection, CAD tools for system design and the integration of MEMS with CMOS circuitry, and the design, fabrication, testing and packaging of MEMS filters themselves are addressed in detail. Case studies where resonator MEMS have been used as components have been included to encourage readers to consider the practical applications of this technology. MEMS Resonator Filters is essential reading for the analogue circuit designer community, particularly those who are designing circuits for wireless communications, and CMOS technology researchers and engineers who are involved in the fabrication of circuits. Designers of sensors and interfacing circuits will also be interested since resonators are also being used as sensors.
Embedded RTOS Design: Insights and Implementation combines explanations of RTOS concepts with detailed, practical implementation. It gives a detailed description of the implementation of a basic real-time kernel designed to be limited in scope and simple to understand, which could be used for a real design of modest complexity. The kernel features upward-compatibility to a commercial real-time operating system: Nucleus RTOS. Code is provided which can be used without restriction. Gain practical information on: Scheduling, preemption, and interrupts Information flow (queues, semaphores, etc.) and how they work Signaling between tasks (signals, events, etc.) Memory management (Where does each task get its stack from? What happens if the stack overflows?) The CPU context: storage and retrieval after a context switch With this book you will be able to: Utilize a basic real-time kernel to develop your own prototype Design RTOS features Understand the facilities of a commercial RTOS
Power Electronics and Motor Drives: Advances and Trends, Second Edition is the perfect resource to keep the electrical engineer up-to-speed on the latest advancements in technologies, equipment and applications. Carefully structured to include both traditional topics for entry-level and more advanced applications for the experienced engineer, this reference sheds light on the rapidly growing field of power electronic operations. New content covers converters, machine models and new control methods such as fuzzy logic and neural network control. This reference will help engineers further understand recent technologies and gain practical understanding with its inclusion of many industrial applications. Further supported by a glossary per chapter, this book gives engineers and researchers a critical reference to learn from real-world examples and make future decisions on power electronic technology and applications.
Imaging sensors are crucial for electronic imaging systems, including digital cameras, camera modules, medical imaging equipment, night vision equipment, radar and sonar, drones, and many others. This contributed book covers a wide range of frequency, sensing modalities and applications, including x-ray beam imaging sensors, optical scattering sensors, smart visual sensors in robotic systems, tuneable diode Laser absorption spectroscopy (TDLAS) sensors, light detection and ranging (LiDAR) sensors, microwave imaging sensors, electro-magnetic imaging with ultra-wideband (UWB) sensors, synthetic aperture radar (SAR), electrical resistance tomography (ERT) sensors, electrical tomography for medical applications, electro-magnetic tomography (EMT) sensors, micro sensors for cell and blood imaging, and ultrasound imaging sensors. Bringing together information on state-of-the-art research in the field, this book is a valuable resource for engineers, researchers, designers and developers, and advanced students and lecturers working on sensing, imaging, optics, photonics, medical imaging, instrumentation, measurement and electronics.
Functional Tactile Sensors: Materials, Devices and Integrations focuses on the subject of novel materials design and device integration of tactile sensors for functional applications. The book addresses the design, materials characteristics, device operation principles, specialized device application and mechanisms of the latest reported tactile sensors. The emphasis of the book lies in the materials science aspects of tactile sensors-understanding the relationship between material properties and device performance. It will be an ideal resource for researchers working in materials science, engineering and physics.
Optical Materials, Second Edition, presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties.
Organometallic Luminescence: A Case Study of Alq3, an OLED Reference Material contains many discoveries on Alq3, an important organometallic material to the optoelectronics community that includes insights that can be applied to other organic compounds. The book contains groundbreaking research from the author's own investigation into the Alq3 material that is based on years of experiments, the results of which initially escaped any logical explanation. The book describes a simple method based on photoluminescence to observe optical properties in Alq3, also covering the optical properties of absorption and long decay from theoretical and experimental perspectives.
The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines.
Reliability has always been a major concern in designing computing systems. However, the increasing complexity of such systems has led to a situation where efforts for assuring reliability have become extremely costly, both for the design of solutions for the mitigation of possible faults, and for the reliability assessment of such techniques. Cross-layer reliability is fast becoming the preferred solution. In a cross-layer resilient system, physical and circuit level techniques can mitigate low-level faults. Hardware redundancy can be used to manage errors at the hardware architecture layer. Eventually, software implemented error detection and correction mechanisms can manage those errors that escaped the lower layers of the stack. This book presents state-of-the-art solutions for increasing the resilience of computing systems, both at single levels of abstraction and multi-layers. The book begins by addressing design techniques to improve the resilience of computing systems, covering the logic layer, the architectural layer and the software layer. The second part of the book focuses on cross-layer resilience, including coverage of physical stress, reliability assessment approaches, fault injection at the ISA level, analytical modelling for cross-later resiliency, and stochastic methods. Cross-Layer Reliability of Computing Systems is a valuable resource for researchers, postgraduate students and professional computer architects focusing on the dependability of computing systems.
Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others. Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues. The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics. Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems.
Switchmode RF and Microwave Power Amplifiers, Third Edition is an essential reference book on developing RF and microwave switchmode power amplifiers. The book combines theoretical discussions with practical examples, allowing readers to design high-efficiency RF and microwave power amplifiers on different types of bipolar and field-effect transistors, design any type of high-efficiency switchmode power amplifiers operating in Class D or E at lower frequencies and in Class E or F and their subclasses at microwave frequencies with specified output power, also providing techniques on how to design multiband and broadband Doherty amplifiers using different bandwidth extension techniques and implementation technologies. This book provides the necessary information to understand the theory and practical implementation of load-network design techniques based on lumped and transmission-line elements. It brings a unique focus on switchmode RF and microwave power amplifiers that are widely used in cellular/wireless, satellite and radar communication systems which offer major power consumption savings.
Photonics, a volume in the Interface Transmission Tutorial Book series, describes the science of photonic transmission properties of the interfaces of composite materials systems and devices. The book's authors review the general analysis methods of interface transmission, give many examples, and apply these methods to photonic applications. Applications discussed include photonic crystals, materials, devices and circuits.
This book highlights recent research advances on biometrics using new methods such as deep learning, nonlinear graph embedding, fuzzy approaches, and ensemble learning. Included are special biometric technologies related to privacy and security issues, such as cancellable biometrics and soft biometrics. The book also focuses on several emerging topics such as big data issues, internet of things, medical biometrics, healthcare, and robot-human interactions. The authors show how these new applications have triggered a number of new biometric approaches. They show, as an example, how fuzzy extractor has become a useful tool for key generation in biometric banking, and vein/heart rates from medical records can also be used to identify patients. The contributors cover the topics, their methods, and their applications in depth.
Modelling Methodologies in Analogue Integrated Circuit Design provides a holistic view of modelling for analogue, high frequency, mixed signal, and heterogeneous systems for designers working towards improving efficiency, reducing design times, and addressing the challenges of representing aging, variability, and other technical challenges at the nanometre scale. The book begins by introducing the concept, history, and development of circuit design up to the present day. The first half of the book then covers various modelling methodologies and addresses model accuracy and verification. Modelling approaches are introduced theoretically along with simple examples to demonstrate the concepts. Later chapters approach modelling from the application point of view, including case studies from the vast domain of integrated circuit design. Topics covered include response surface modeling; machine learning; data-driven and physics-based modeling; verification of modelling: metrics and methodologies; an overview of modern, automated analog circuit modeling methods; machine learning techniques for the accurate modeling of integrated inductors for RF applications; modeling of variability and reliability in analog circuits; modeling of pipeline ADC functionality and non-idealities; power systems modelling; case study - an efficient design and layout of a 3D accelerometer by automated synthesis; and sensing schemes for spintronic resistive memories.
|
You may like...
Analysis, Control and Optimization of…
El-K ebir Boukas, Roland P Malham e
Hardcover
R2,672
Discovery Miles 26 720
Robust Optimization of Spline Models and…
Ayse OEzmen
Hardcover
Analytics, Operations, and Strategic…
Gerald William Evans, William E. Biles, …
Hardcover
R5,333
Discovery Miles 53 330
Banking Risk Management in a Globalizing…
Panos Angelopoulos, Panos Mourdoukoutas
Hardcover
R2,547
Discovery Miles 25 470
|