![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
5G IoT and Edge Computing for Smart Healthcare addresses the importance of a 5G IoT and Edge-Cognitive-Computing-based system for the successful implementation and realization of a smart-healthcare system. The book provides insights on 5G technologies, along with intelligent processing algorithms/processors that have been adopted for processing the medical data that would assist in addressing the challenges in computer-aided diagnosis and clinical risk analysis on a real-time basis. Each chapter is self-sufficient, solving real-time problems through novel approaches that help the audience acquire the right knowledge. With the progressive development of medical and communication - computer technologies, the healthcare system has seen a tremendous opportunity to support the demand of today's new requirements.
Microwave and millimeter-wave (mm-wave) circuits and systems have been widely employed in various emerging technologies such as 5G and beyond wireless mobile communication systems, autonomous driving, electronic warfare, and radar systems. To better understand the benefits, challenges, and opportunities of this technology, further study is required. The Handbook of Research on Emerging Designs and Applications for Microwave and Millimeter Wave Circuits describes the latest advances in microwave and mm-wave applications and provides state-of-the-art research in the domain of microwave, mm-wave, and THz devices and systems. Covering key topics such as antennas, circuits, propagation, and energy harvesting, this major reference work is ideal for computer scientists, industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.
Metal Oxides for Biomedical and Biosensor Applications gives an in-depth overview of the emerging research in the biomedical and biosensing applications of metal oxides, including optimization of their surface and bulk properties. Sections cover biomedical applications of metal oxides for use in cell cultures, antibacterial and antimicrobial treatments, dental applications, drug delivery, cancer therapy, immunotherapy, photothermal therapy, tissue engineering, and metal oxide-based biosensor development. As advanced and biofunctionalized nano/micro structured metal oxides are finding applications in microfluidics, optical sensors, electrochemical sensors, DNA-based biosensing, imaging, diagnosis and analysis, this book provides a comprehensive update on the topic. Additional sections cover research challenges, technology limitations, and future trends in metal oxides and their composites regarding their usage in biomedical applications.
Principles of Electron Optic: Volume Three: Wave Optics, discusses this essential topic in microscopy to help readers understand the propagation of electrons from the source to the specimen, and through the latter (and from it) to the image plane of the instrument. In addition, it also explains interference phenomena, notably holography, and informal coherence theory. This third volume accompanies volumes one and two that cover new content on holography and interference, improved and new modes of image formation, aberration corrected imaging, simulation, and measurement, 3D-reconstruction, and more. The study of such beams forms the subject of electron optics, which divides naturally into geometrical optics where effects due to wavelength are neglected, with wave optics considered.
Machine Learning for Future Fiber-Optic Communication Systems provides a comprehensive and in-depth treatment of machine learning concepts and techniques applied to key areas within optical communications and networking, reflecting the state-of-the-art research and industrial practices. The book gives knowledge and insights into the role machine learning-based mechanisms will soon play in the future realization of intelligent optical network infrastructures that can manage and monitor themselves, diagnose and resolve problems, and provide intelligent and efficient services to the end users. With up-to-date coverage and extensive treatment of various important topics related to machine learning for fiber-optic communication systems, this book is an invaluable reference for photonics researchers and engineers. It is also a very suitable text for graduate students interested in ML-based signal processing and networking.
The book comprises three parts. The first part provides the state-of-the-art of robots for endoscopy (endorobots), including devices already available in the market and those that are still at the R&D stage. The second part focusses on the engineering design; it includes the use of polymers for soft robotics, comparing their advantages and limitations with those of their more rigid counterparts. The third part includes the project management of a multidisciplinary team, the health cost of current technology, and how a cost-effective device can have a substantial impact on the market. It also includes information on data governance, ethical and legal frameworks, and all steps needed to make this new technology available.
Sustainable Strategies in Organic Electronics reviews green materials and devices, sustainable processes in electronics, and the reuse, recycling and degradation of devices. Topics addressed include large-scale synthesis and fabrication of safe device materials processes that neither use toxic reagents, solvents or produce toxic by-products. Emerging opportunities such as new synthetic approaches for enabling the commercialization of pi-conjugated polymer-based devices are explored, along with new efforts towards incorporating materials from renewable resources for a low carbon footprint. Finally, the book discusses the latest advances towards device biodegradability and recycling. It is suitable for materials scientists and engineers, chemists, physicists in academia and industry.
PEDOT is currently the most widely used polymeric material in research and development. Over the past 10 years, PEDOT has been investigated for potential organic thermoelectric applications because of its superior thermoelectric and mechanical properties compared with other conductive polymers. However, many challenges remain to be solved before it is translated into key technologies. Advanced PEDOT Thermoelectric Materials summarizes current progress and the challenges of PEDOT thermoelectric materials, while clarifying directions for future development. This book provides a comprehensive overview of chemical, physical, and technical information about this organic thermoelectric polymer. The authors also give details about the theoretical basis of PEDOT, including preparation and characterization, and its development as a high-performance thermoelectric material.
Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide-carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide-carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide-carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide-carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide-carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide-carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems.
Organic Ferroelectric Materials and Applications aims to bring an up-to date account of the field with discussion of recent findings. This book presents an interdisciplinary resource for scientists from both academia and industry on the science and applications of molecular organic piezo- and ferroelectric materials. The book addresses the fundamental science of ferroelectric polymers, molecular crystals, supramolecular networks, and other key and emerging organic materials systems. It touches on important processing and characterization methods and provides an overview of current and emerging applications of organic piezoelectrics and ferroelectrics for electronics, sensors, energy harvesting, and biomedical technologies. Organic Ferroelectric Materials and Applications will be of special interest to those in academia or industry working in materials science, engineering, chemistry, and physics.
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
In recent decades, there has been a groundbreaking evolution in technology. Every year, technology not only advances, but it also spreads throughout industries. Many fields such as law, education, business, engineering, and more have adopted these advanced technologies into their toolset. These technologies have a vastly different effect ranging from these different industries. The Handbook of Research on Applying Emerging Technologies Across Multiple Disciplines examines how technologies impact many different areas of knowledge. This book combines a solid theoretical approach with many practical applications of new technologies within many disciplines. Covering topics such as computer-supported collaborative learning, machine learning algorithms, and blockchain, this text is essential for technologists, IT specialists, programmers, computer scientists, engineers, managers, administrators, academicians, students, policymakers, and researchers.
Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications.
Cyber-Physical Systems: AI and COVID-19 highlights original research which addresses current data challenges in terms of the development of mathematical models, cyber-physical systems-based tools and techniques, and the design and development of algorithmic solutions, etc. It reviews the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS) and reviews tools and techniques that can be used. This book will act as a resource to guide COVID researchers as they move forward with clinical and epidemiological studies on this outbreak, including the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS). The major problem in the identification of COVID-19 is detection and diagnosis due to non-availability of medicine. In this situation, only one method, Reverse Transcription Polymerase Chain Reaction (RT-PCR) has been widely adopted and used for diagnosis. With the evolution of COVID-19, the global research community has implemented many machine learning and deep learning-based approaches with incremental datasets. However, finding more accurate identification and prediction methods are crucial at this juncture.
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5-10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students.
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics.
Deep Learning for Chest Radiographs enumerates different strategies implemented by the authors for designing an efficient convolution neural network-based computer-aided classification (CAC) system for binary classification of chest radiographs into "Normal" and "Pneumonia." Pneumonia is an infectious disease mostly caused by a bacteria or a virus. The prime targets of this infectious disease are children below the age of 5 and adults above the age of 65, mostly due to their poor immunity and lower rates of recovery. Globally, pneumonia has prevalent footprints and kills more children as compared to any other immunity-based disease, causing up to 15% of child deaths per year, especially in developing countries. Out of all the available imaging modalities, such as computed tomography, radiography or X-ray, magnetic resonance imaging, ultrasound, and so on, chest radiographs are most widely used for differential diagnosis between Normal and Pneumonia. In the CAC system designs implemented in this book, a total of 200 chest radiograph images consisting of 100 Normal images and 100 Pneumonia images have been used. These chest radiographs are augmented using geometric transformations, such as rotation, translation, and flipping, to increase the size of the dataset for efficient training of the Convolutional Neural Networks (CNNs). A total of 12 experiments were conducted for the binary classification of chest radiographs into Normal and Pneumonia. It also includes in-depth implementation strategies of exhaustive experimentation carried out using transfer learning-based approaches with decision fusion, deep feature extraction, feature selection, feature dimensionality reduction, and machine learning-based classifiers for implementation of end-to-end CNN-based CAC system designs, lightweight CNN-based CAC system designs, and hybrid CAC system designs for chest radiographs. This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry.
Now in its Third Edition, Fundamentals of Optical Waveguides continues to be an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto continues to present this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Silicon photonics devices such as coupled resonator optical waveguides (CROW), lattice-form filters, and AWGs are also fully described. This new edition gives readers not only a thorough understanding the silicon photonics devices for on-chip photonic network, but also the capability to design various kinds of devices.
The Beginnings of Electron Microscopy - Part 1, Volume 220 in the Advances in Imaging and Electron Physics series highlights new advances in the field, with this new volume presenting interesting chapters on Electron-optical Research at the AEG Forschungs-Institut 1928-1940, On the History of Scanning Electron Microscopy, of the Electron Microprobe, and of Early Contributions to Transmission Electron Microscopy, Random Recollections of the Early Days, Early History of Electron Microscopy in Czechoslovakia, Personal Reminiscences of Early Days in Electron, Megavolt Electron Microscopy, Cryo-Electron Microscopy and Ultramicrotomy: Reminiscences and Reflections, and much more.
Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics incorporates the results of four decades of research and applications of dielectric spectroscopy for solids, mostly for the investigation of materials used in electronics. The book differs from others by more detailed analysis of the features of dielectric spectra conditioned by specific mechanisms of electrical polarization and conductivity. Some original methods are presented in the simulation of frequency distributions (relaxers and oscillators), with methods proposed for various ferroelectrics frequency-temperature dielectric spectra. Also described are original methods for ferroelectrics on microwaves investigation, including the features of thin films study. The book is not burdened by complex mathematical proofs and should help readers quickly understand how to apply dielectric spectroscopy methods to their own research problems. More advanced readers may also find this book valuable as a review of the key concepts and latest advances on the topics presented. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,578
Discovery Miles 25 780
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
|