![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book's primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications.
Metal Oxides for Optoelectronics and Optics-based Medical Applications reviews recent advances in metal oxides and their mechanisms for optoelectronic, photoluminescent and medical applications. In addition, the book examines the integration of key chemistry concepts with nanoelectronics that can improve performance in a diverse range of applications. Sections place a strong emphasis on synthesis processes that can improve the metal oxides' physical properties and the reflected surface chemical changes that can impact their performance in various devices like light-emitting diodes, luminescence materials, solar cells, etc. Finally, the book discusses the challenges associated with the handling and maintenance of metal oxides crystalline properties. This book will be suitable for academics and those working in R&D in industry looking to learn more about cheaper and more effective methods to produce metal oxides for use in the fields of electronics, photonics, biophotonics and engineering.
Robotics plays a pivotal role in many domains such as industry and medicine. Robots allow for increased safety, production rates, accuracy, and quality; however, robots must be well designed and controlled to achieve the required performance. The design and control of robotics involve many varying disciplines, such as mechanical engineering, electronics, and automation, and must be further studied to ensure the technology is utilized appropriately. Design and Control Advances in Robotics considers the most recent applications and design advances in robotics and highlights the latest developments and applications within the field of robotics. Covering key topics such as deep learning, machine learning, programming, automation, and control advances, this reference work is ideal for engineers, computer scientists, industry professionals, academicians, practitioners, scholars, researchers, instructors, and students.
Brillouin Scattering, Volume 109 in the Semiconductors and Semimetal series, marks the centenary of Leon Brillouin's seminal 1922 paper which provided a detailed theory of the effect that now bears his name. Stimulated Brillouin Scattering (SBS) is the strongest third order optical nonlinearity and plays an important role in contemporary science and applications, particularly lasers, communications, and fibre optics, as well as playing a new role in experimental physics and the life sciences. This volume provides a foundational perspective on Brillouin scattering, starting with a historical review of Brillouin scattering, the theory of SBS and the convergence between SBS and Optomechanics. We then consider SBS in several different waveguide geometries, including photonic crystal fibres, integrated optics and superfluids.
Luminescent Metal Nanoclusters: Synthesis, Characterization, and Applications provides a comprehensive accounting of various protocols used for the synthesis of metal nanoclusters, their characterization techniques, toxicity evaluation and various applications and future prospects. The book provides detailed experimental routes, along with mechanisms on the formation of benign metallic clusters using biomaterials and a comprehensive review regarding the preparation, properties and prospective applications of these nano clusters in various fields, including therapeutic applications. Various methods to protect nanocluster materials to increase their stability are emphasized, including the incorporation of ligands (protein, small molecule, DNA, thiols). This book addresses a gap in the current literature by bringing together the preparation, characterization and applications of all the possible types of reported metal nanoclusters and their hybrids. It is suitable for materials scientists and engineers in academia and those working in research and development in industry. It may also be of interest to those working in the interdisciplinary nanotechnology community, such as physical chemists.
Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications serves as a reference on the key concepts of the advances of polymer-oxide composites. The book reviews knowledge on polymer-composite theory, properties, structure, synthesis, and their characterization and applications. There is an emphasis on coupling metal oxides with polymers from renewable sources. Also, the latest advances in the relationship between the microstructure of the composites and the resulting improvement of the material's properties and performance are covered. The applications addressed include desalination, tissue engineering, energy storage, hybrid energy systems, food, and agriculture. This book is suitable for early-career researchers in academia and R&D in industry who are working in the disciplines of materials science, engineering, chemistry and physics.
Plasmon Coupling Physics, Wave Effects and their Study by Electron Spectroscopies, Volume 222 in the Advances in Imaging and Electron Physics serial, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more.
Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies.
Radiation Dosimetry Phosphors provides an overview of the synthesis, properties and applications of materials used for radiation dosimetry and reviews the most appropriate phosphor materials for each radiation dosimetry technique. The book describes the available phosphors used commercially for their applications in the medical field for dose measurements. Although radiation dosimetry phosphors are commercially available, continuous efforts have been made by the worldwide research community to develop new materials or improve already existing materials used in different areas with low or high levels of radiation. Moreover, researchers are still working on developing dosimetric phosphors for OSL, ML, LL and RPL dosimetry. This book provides an overall view of the phosphors available, low cost synthesis methods, mechanisms involved, emerging trends and new challenges for the development of emerging materials for radiation dosimetry. It is suitable for those working in academia and R&D laboratories in the discipline of materials science and engineering, along with practitioners working in radiation and dosimetry.
Most modern systems involve various engineering disciplines. Mechatronic systems are designed to be dependable and efficient; however, mechatronics engineering faces multiple challenges at the design and exploitation stages. It is essential for engineers to be aware of these challenges and remain up to date with the emerging research in the mechatronics engineering field. Trends, Paradigms, and Advances in Mechatronics Engineering presents the latest advances and applications of mechatronics. It highlights the recent challenges in the field and facilitates understanding of the subject. Covering topics such as the construction industry, design optimization, and low-cost fabrication, this premier reference source is a crucial resource for engineers, computer scientists, construction managers, students and educators of higher education, librarians, researchers, and academicians.
Machine Learning for Future Fiber-Optic Communication Systems provides a comprehensive and in-depth treatment of machine learning concepts and techniques applied to key areas within optical communications and networking, reflecting the state-of-the-art research and industrial practices. The book gives knowledge and insights into the role machine learning-based mechanisms will soon play in the future realization of intelligent optical network infrastructures that can manage and monitor themselves, diagnose and resolve problems, and provide intelligent and efficient services to the end users. With up-to-date coverage and extensive treatment of various important topics related to machine learning for fiber-optic communication systems, this book is an invaluable reference for photonics researchers and engineers. It is also a very suitable text for graduate students interested in ML-based signal processing and networking.
Sensors for Ranging and Imaging is a comprehensive textbook and professional reference that provides a solid background in active sensing technology. This new edition has been comprehensively updated and expanded to include the latest radar technologies. Beginning with an introductory section on signal generation, filtering and modulation, the book follows with chapters on radiometry (infrared and microwave) as a background to the active sensing process. The core of the book is concerned with active sensing, starting with active ranging and active imaging sensors (operational principles, components), and goes through the derivation of the radar (and lidar) range equations, and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Further chapters cover signal propagation of both electromagnetic and acoustic energy, and target and clutter characteristics. The remainder of the book involves the basics of the range measurement process, active imaging with an emphasis on noise and linear frequency modulation techniques, Doppler processing, and target tracking. This systematic and thorough guide to ranging and imaging sensors is invaluable for graduate students studying sensing systems and industry professionals wishing to expand or update their knowledge. It offers clear, detailed explanations alongside worked examples to provide readers with an in-depth understanding of the material.
Sustainable Strategies in Organic Electronics reviews green materials and devices, sustainable processes in electronics, and the reuse, recycling and degradation of devices. Topics addressed include large-scale synthesis and fabrication of safe device materials processes that neither use toxic reagents, solvents or produce toxic by-products. Emerging opportunities such as new synthetic approaches for enabling the commercialization of pi-conjugated polymer-based devices are explored, along with new efforts towards incorporating materials from renewable resources for a low carbon footprint. Finally, the book discusses the latest advances towards device biodegradability and recycling. It is suitable for materials scientists and engineers, chemists, physicists in academia and industry.
The Beginnings of Electron Microscopy - Part 2, Volume 221 in the Advances in Imaging and Electron Physics series, highlights new advances in the field, with this new volume presenting interesting chapters on Recollections from the Early Years: Canada-USA, My Recollection of the Early History of Our Work on Electron Optics and the Electron Microscope, Walter Hoppe (1917-1986), Reminiscences of the Development of Electron Optics and Electron Microscope Instrumentation in Japan, Early Electron Microscopy in The Netherlands, L. L. Marton, 1901-1979, The Invention of the Electron Fresnel Interference Biprism, The Development of the Scanning Electron Microscope, and much more.
Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices provides an overview of the materials, preparation and fabrication methods for biosensor applications. The book introduces the field of electrochemistry and its fundamentals, also providing a practical overview of working electrodes as key components for the implementation of sensors and assays. Features covered include the prompt transfer of electrons, favorable redox behavior, biocompatibility, and inertness in terms of electrode fouling. Special attention is dedicated to analyzing the various working materials systems for electrodes used in electrochemical cells such as gold, carbon, copper, platinum and metal oxides. This book is suitable for academics and practitioners working in the disciplines of materials science and engineering, analytical chemistry and biomedical engineering.
Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis reflects on recent progress and challenges in graphene-metal oxide composites. The book reviews synthetic strategies, characterization methods and applications in photocatalysis and electrocatalysis. Graphene-metal oxides, graphene-novel metals and other composites intended for sustainable energy production, energy storage, and environmental development such as H2 production, CO2 reduction, pollutant removal, supercapacitors and lithium ion batteries are covered. Overall, this book presents a comprehensive, systematic, and up-to-date summary on graphene oxide-based materials. Graphene oxide and related composite materials bring new perspectives and prospects to both photocatalysts and electrocatalysts. The collective and synergistic effect between graphene oxide and metal oxide are manifold. The significance of the relationship among these groups of materials, their structures and performance is emphasized.
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering.
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering.
5G IoT and Edge Computing for Smart Healthcare addresses the importance of a 5G IoT and Edge-Cognitive-Computing-based system for the successful implementation and realization of a smart-healthcare system. The book provides insights on 5G technologies, along with intelligent processing algorithms/processors that have been adopted for processing the medical data that would assist in addressing the challenges in computer-aided diagnosis and clinical risk analysis on a real-time basis. Each chapter is self-sufficient, solving real-time problems through novel approaches that help the audience acquire the right knowledge. With the progressive development of medical and communication - computer technologies, the healthcare system has seen a tremendous opportunity to support the demand of today's new requirements.
Industrial Tomography: Systems and Applications, Second Edition thoroughly explores the important techniques of industrial tomography, also discusses image reconstruction, systems, and applications. This book presents complex processes, including the way three-dimensional imaging is used to create multiple cross-sections, and how computer software helps monitor flows, filtering, mixing, drying processes, and chemical reactions inside vessels and pipelines. This book is suitable for materials scientists and engineers and applied physicists working in the photonics and optoelectronics industry or in the applications industries.
Metal Oxides for Biomedical and Biosensor Applications gives an in-depth overview of the emerging research in the biomedical and biosensing applications of metal oxides, including optimization of their surface and bulk properties. Sections cover biomedical applications of metal oxides for use in cell cultures, antibacterial and antimicrobial treatments, dental applications, drug delivery, cancer therapy, immunotherapy, photothermal therapy, tissue engineering, and metal oxide-based biosensor development. As advanced and biofunctionalized nano/micro structured metal oxides are finding applications in microfluidics, optical sensors, electrochemical sensors, DNA-based biosensing, imaging, diagnosis and analysis, this book provides a comprehensive update on the topic. Additional sections cover research challenges, technology limitations, and future trends in metal oxides and their composites regarding their usage in biomedical applications. |
You may like...
Noise Control - From Concept to…
Colin H. Hansen, Kristy L. Hansen
Paperback
R1,985
Discovery Miles 19 850
Toeplitz Matrices and Singular Integral…
Albrecht Bottcher, Israel Gohberg, …
Hardcover
R2,460
Discovery Miles 24 600
Sensitivity Analysis for Neural Networks
Daniel S. Yeung, Ian Cloete, …
Hardcover
R2,628
Discovery Miles 26 280
|