![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Enzymology
Multicellular organisms must be able to adapt to cellular events to
accommodate prevailing conditions. Sensory-response circuits
operate by making use of a phosphorylation control mechanism known
as the "two-component system."
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
Glycosyltransferases (GTs) are essential for the biosynthesis of complex glycoconjugates and are powerful tools to study the functions of complex glycans in health, development and disease. Complex glycoconjugates, such as glycoproteins, proteoglycans and glycolipids, are assembled by GTs which synthesize specific linkages between sugars or sugars and protein. This is in contrast to the non-specific or less specific chemical glycation reactions, transglycosylation and reverse glycosylation reactions. Glycosyltransferases: Methods and Protocols contains a wide range of studies, methods and protocols which form a solid basis for investigations of the role and mechanisms, biology and pathology involving GTs. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Glycosyltransferases: Methods and Protocols is a vital contribution to glycobiology and glycopathology, and to applications of these enzymes in biotechnology and drug development. It will prove invaluable to students, postdoctoral fellows, and senior scientists carrying on research of GTs that has been intensified over the last years.
This book covers the most recent developments in the analysis of allosteric enzymes and provides a logical introduction to the limits for enzyme function as dictated by the factors that are limits for life. The book presents a complete description of all the mechanisms used for changing enzyme activity. It is extensively illustrated to clarify kinetic and regulatory properties. Eight enzymes are used as model systems after extensive study of their mechanisms. Wherever possible, the human form of the enzyme is used to illustrate the regulatory features.
Protein methylation has recently emerged as one of the most exciting areas of study on posttranslational modification. A large family of protein methyltransferases has been identified and their structural properties have been characterized. These studies have provided novel insights into how methylation regulates a variety of biological functions including DNA and RNA metabolism, protein synthesis and signal transduction. Methylation also plays important roles in aging. This volume is intended to capture these recent developments concerning protein methyltransferases.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
This volume on conjugation enzymes and transporters serves to bring
together current methods and concepts in an interesting, important
and rapidly developing field of cell and systems biology. It
focuses on the so-called Phase II enzymes of drug metabolism
(xenobiotics), which has important ramifications for endogenous
metabolism and nutrition. Also included are aspects on Phase III,
transport systems. This volume of Methods in Enzymology presents
current knowledge and methodology on glucuronidation, sulfation,
acetylation, and transport systems in this field of research.
Together with the volumes on Quinones and Quinone Enzymes (volumes
378 and 382), and on Glutathione Transferases and gamma-Glutamyl
Transpeptidases (volume 401), the state of knowledge on proteomics
and metabolomics of many pathways of (waste) product elimination,
enzyme protein induction and gene regulation and feedback control
is provided. This volume will help stimulate future investigations
and speed the advance of knowledge in systems biology.
Rab GTPases now comprise a family of >63 members. They are
emerging as the key hub element controlling the membrane
architecture of eukaryotic cells. They are intimately involved in
vesicle targeting and fusion in both the endocytic and exocytic
pathways and direct the assembly and disassembly of protein
complexes that include regulators (GEFs and GAPs), effectors
(tethers/motors) and fusion components (SNAREs) that control
membrane targeting and fusion. During the last 3 years the field
has virtually exploded with the identification and characterization
of many new Rab proteins and their effectors.
The Springer Handbook of Enzymes provides concise data on some 5,000 enzymes sufficiently well characterized and here is the second, updated edition. Their application in analytical, synthetic and biotechnology processes as well as in food industry, and for medicinal treatments is added. Data sheets are arranged in their EC-Number sequence. The new edition reflects considerable progress in enzymology: the total material has more than doubled, and the complete 2nd edition consists of 39 volumes plus Synonym Index. Starting in 2009, all newly classified enzymes are treated in Supplement Volumes."
Enzymes and whole cells are able to catalyze the most complex chemical processes under the most benign experimental and environmental conditions. In this way, enzymes and cells could be excellent catalysts for a much more sustainable chemical industry. However, enzymes and cells also have some limitations for nonbiological applications: fine chemistry, food chemistry, analysis, therapeutics, and so on. Enzymes and cells may be unstable, difficult to handle under nonconventional conditions, poorly selective toward synthetic substrates, and so forth. From this point of view, the transformation-from the laboratory to industry-of chemical processes catalyzed by enzymes and cells may be one of the most complex and exciting goals in biotechnology. For many industrial applications, enzymes and cells have to be immobilized, via very simple and cost-effective protocols, in order to be re-used over very long periods of time. From this point of view, immobilization, simplicity, and stabilization have to be strongly related concepts. Over the last 30 years, a number of protocols for the immobilization of cells and enzymes have been reported in scientific literature. However, only very few protocols are simple and useful enough to greatly improve the functional properties of enzymes and cells, activity, stability, selectivity, and related properties.
Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery.
Drug metabolism and transport are very important facets within the discipline of pharmaceutical sciences, with enzyme kinetic concepts utilized regularly in characterizing and modeling the disposition and elimination of drugs. Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications focuses on very practical aspects of applying kinetic principles to drug metabolizing enzymes and transporters. Divided into five convenient sections, topics include the fundamental principles of enzyme kinetics, the kinetics of oxidative and conjugative drug metabolizing enzymes and drug transporters, modeling approaches for both drug metabolizing enzymes and transporters including novel systems biology approaches, understanding of variability both experimental and interindividual (pharmacogenomic), and case studies that provide real life examples of applying these principles. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics especially suitable for the novice, in some cases step-by-step, readily reproducible protocols, and insights to help with troubleshooting and avoiding known pitfalls with extensive cross referencing to assist in learning. Authoritative and easily accessible, Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications serves as a very practical teaching tool for novice, non-mathematically trained scientists interested in these fundamental concepts and as an aid for their supervisors in teaching these principles.
This volume continues the in-depth treatment of the topic and
covers the RSG protein superfamily including RZ, R4, R7, R12,
RhoGEF, and GRK, as well as other heterotrimeric G-protein
signaling regulators.
This volume addresses current methods in biological imaging, including extensive sections on MRI, CAT, NMR, PET and other imaging techniques.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
This work establishes linear-scaling density-functional theory (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable of simulating entire enzymes at the ab initio quantum-mechanical level of accuracy. DFT has transformed the physical sciences by allowing researchers to perform parameter-free quantum-mechanical calculations to predict a broad range of physical and chemical properties of materials. In principle, similar methods could be applied to biological problems. However, even the simplest biological systems contain many thousands of atoms and are characterized by extremely complex configuration spaces associated with a vast number of degrees of freedom. The development of linear-scaling density-functional codes makes biological molecules accessible to quantum-mechanical calculation, but has yet to resolve the complexity of the phase space. Furthermore, these calculations on systems containing up to 2,000 atoms can capture contributions to the energy that are not accounted for in QM/MM methods (for which the Nobel prize in Chemistry was awarded in 2013) and the results presented here reveal profound shortcomings in said methods.
The inducible isoforms of the enzymes cyclooxygenase (COX 2), nitric oxide synthase (iNOS) and heme oxygenase 1 (HO-1) have generated great interest as possible therapeutic targets in inflammation. This book is the first publication to address the importance of all three enzymes and the consequences of their interactions to the inflammatory process. The book brings together overviews by leading researchers in the field of the current status of knowledge of COX, NOS and HO in inflammation. These overviews cover a series of new concepts in the mechanism of inflammation. Topics include inducible enzyme involvement in inflammatory processes including the role in vascular permeability, leukocycte migration, granuloma formation, angiogenesis, neuroinflammation and algesia. New findings from transgenic animal models are reviewed. Other chapters address the importance of these enzymes in inflammatory disease states including rheumatoid arthritis, atherosclerosis and multiple sclerosis. The possibility of selective inhibitors or inducers of COX, NOS and HO, and their use in the clinic is discussed. The subject matter of this book is of interest to rheumatologists, pathologists, pharmacologists, neuroscientists and anyone with an academic interest in the mechanisms of inflammation.
The aim of this volume is to brief researchers of the importance of
data analysis in enzymology, and of the modern methods that have
developed concomitantly with computer hardware. It is also to
validate researchers' computer programs with real and synthetic
data to ascertain that the results produced are what they expected.
DNA in the nucleus of plant and animal cells is stored in the form
of chromatin. Chromatin and the chromatin remodelling enzymes play
an important role in gene transcription.
This volume focuses on methods related to allosteric enzymes and
receptors, including fluorescent proves, spectroscopic methods and
quantitative analysis as well as on cooperativity in protein
folding. NMR and mass spectrometry methods are discussed.
DNA in the nucleus of plant and animal cells is stored in the form of chromatin. Chromatin and the Chromatin remodelling enzymes play an important role in gene transcription.
Quinones are members of a class of aromatic compounds with two
oxygen atoms bonded to the ring as carbonyl groups. This volume
covers more clinical aspects of quinines, such as anticancer
properties, as well as their role in nutrition and in age-related
diseases.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications. |
![]() ![]() You may like...
Adam Smith's Pluralism - Rationality…
Jack Russell Weinstein
Hardcover
R2,178
Discovery Miles 21 780
|