![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Clinical & internal medicine > Gene therapy
This book summarizes early pioneering achievements in the field of human neural stem cell (hNSC) research and combines them with the latest advances in stem cell technology, including reprogramming and gene editing. The powerful potential of hNSC to generate and repair the developing and adult CNS has been confirmed by numerous experimental in vitro and in vivo studies. The book presents methods for hNSC derivation and discusses the mechanisms underlying NSC in vitro fate decisions and their in vivo therapeutic mode of action. The long-standing dogma that the human central nervous system (CNS) lacks the ability to regenerate was refuted at the end of the 20th century, when evidence of the presence of neurogenic zones in the adult human brain was found. These neurogenic zones are home to human neural stem cells (hNSCs), which are capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. NSCs isolated from human CNS have a number of clinical advantages, especially the innate potential to differentiate into functional neural cells. Nevertheless, their full clinical exploitation has been hindered by limited access to the tissue and low expansion potential. The search for an alternative to CNS sources of autologous, therapeutically competent hNSCs was the driving force for the many studies proving the in vitro plasticity of different somatic stem cells to generate NSCs and their functional progeny. Now the era of induced pluripotent stem cells has opened entirely new opportunities to achieve research and therapeutic goals with the aid of hNSCs.
This book describes important developments and emerging trends in experimental and clinical cancer gene therapy. It reflects the tremendous advances made over recent years with respect to immunogenes, suicide genes and gene correction therapies, as well as in gene suppression and miRNA therapies. Many of the described strategies focus on the generation of more efficient and specific means of attack at known and novel cellular targets associated with tumor development and progression. The book also details parallel improvements in vector design, vector delivery, and therapeutic efficacy. It offers readers a stimulating, broad overview of advances in the field, linking experimental strategies to their clinical applications.
Due to continuous technical developments and new insights into the high complexity of neurological diseases, there is an increasing need for the application of proteomic technologies which can yield potential biomarker readouts for improved clinical management as well as for the development of new drugs by struggling pharmaceutical companies. This book describes the step-by-step use of proteomic methods such as two-dimensional gel electrophoresis, multiplex immunoassay, liquid chromatography mass spectrometry (LC-MS) and selective reaction monitoring MS, to increase our understanding of these diseases, with the ultimate aim of improving patient care. The volume will be of high interest to clinical scientists, physicians and pharmaceutical company scientists as it gives insights into the latest technologies enabling the revolution of personalized medicine. It is of direct interest to both technical and bench biomarker scientists as it gives step by step instructions on how to carry out each of the protocols. It is also of interest to researchers as each technique will be presented in the context of a specific neurological disorder, including Alzheimer's disease, multiple sclerosis, autism spectrum disorders, schizophrenia, major depressive disorder and bipolar disorder. Finally, it will also highlight the future research efforts in this field, which are endeavoring to convert proteomic platforms to the form of hand held devices which can be used in a point of care setting and return diagnostic results within the timeframe of a visit to the general practitioner.
In this book, leading international experts analyze state-of-the-art advances in gene transfer vectors for applications in inherited disorders and also examine the toxicity profiles of these methods. The authors discuss the strengths and weaknesses of available vectors in the clinical setting, and specifically focus on the challenges and possible solutions that researchers are testing in order to improve the safety of gene therapy for genetic diseases. This comprehensive and authoritative overview of vector development is a necessary text for researchers, toxicologists, pharmacologists, molecular biologists, physicians, and students in these fields.
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineers and physicists may benefit from the overview of current research endeavors and future directions. Furthermore, it may also serve to direct manufacturers towards the design of more efficient and safer clinical, industrial and laboratory equipment.
"The Forever Fix" is the first book to tell the fascinating story of gene therapy: how it works, the science behind it, how patients (mostly children) have been helped and harmed, and how scientists learned from each trial to get one step closer to its immense promise, the promise of a "forever fix," - a cure that, by fixing problems at their genetic root, eliminates the need for further surgery or medication.
The feld of regenerative medicine is in its infancy state. Enthusiasm for the potential of organ regeneration lies with the potential pluripotency of stem cells to differentiate into various tissue types. This volume of Methods in Molecular Biology will focus on the use of stem cells for myocardial repair and regeneration. The emphasis of this issue will be to provide basic scientists, translational investigators, and cardiologists a means to evaluate the effcacy and safety of stem cells in a standardized fashion for myocardial regeneration. Many different cell types have been considered for myocardial repair. Adult card- myocytes are unable to survive even when transplanted into normal myocardium. The use of fetal or neonatal cardiomyocytes is not a feasible source of cells due to ethical concerns and donor availability. Therefore, the use of pluripotent stem cells has become the focus of a cell source for myocardial repair and regeneration. A variety of stem cell types have been suggested to participate in myocardial repair. This has led the investigators to search for the "optimal cell type for myocardial repair". Reliable isolation of the cell source with the ability to expand the cell population is a prerequisite. In the frst section of this book, methods for isolation of commonly used stem cells being investigated for myocardial regeneration are presented. Once a stem cell source has been selected, the stem cell needs to be tested in an app- priate animal model before being translated into clinical practice.
The growing knowledge about disturbances of epigenetic gene regulation in hematopoietic stem cell disorders is now being translated into treatment approaches that target the epigenetic defects pharmacologically. This book first presents the latest evidence regarding the epigenetic regulation of hematopoietic stem cell differentiation and hemoglobin production. The significance of DNA methylation abnormalities in hematopoietic disorders and of epigenetic disturbances in lung cancer and other solid tumors is then discussed. A major part of the book, however, relates specifically to the translation of basic research and drug development to clinical applications, and in this context both present and future clinical strategies are considered. Individual chapters are devoted to the use of DNA hypomethylating agents and chromatin-modifying agents, and the treatment of hematologic malignancies and solid tumors by means of epigenetic agents is discussed in detail.
Continued refinement of wide-spread access to transgenic technology has allowed for new animal models have been developed that exhibit features of autoimmune disease have been developed that exhibit features of autoimmune disease. The second edition of Autoimmunity: Methods and Protocols researchers in the field detail many of the most up-to-date methods which are now commonly used to study autoimmunity. The first half the book focuses on methods and protocols used to assess immunological and biochemical pathways of diseases pathogenesis in human subjects. While the second half investigates treatment of inflammatory arthritis, experimental allergic encephalomyelitis (EAE), IDDM, scleroderma, and uveitis in animal models and assessment of genetic, immunological, and biochemical parameters underlying spontaneous or exogenous antigen-induced diseases. Written in the highly successful Methods in Molecular Biology(tm) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Through and intuitive, Autoimmunity: Methods and Protocols, Second Edition seeks to aid scientists in the autoimmunity field to extract new meaning of old models and developing new ones.
Today, progress in rAAV-mediated gene transfer is so robust that long-term, efficient, and regulatable transgene expression is reproducibly achieved in large animal models. The complexity of gene transfer agents in the context of their clinical use requires investigators from a wide variety of backgrounds to have an understanding - or at least an appreciation of - the regulatory environment and constraints that affect vector design, manufacturing, pre-clinical testing, and clinical use, with an emphasis on patient protection. In Adeno-Associated Virus: Methods and Protocols, experts from the United States and Europe have contributed current knowledge of this multi-dimensional field relating to the biology of AAV, rAAV vector design, vector manufacturing and product testing, performance of rAAV vectors in major organs, rAAV-related immunological issues, design of animal and clinical studies, and clinical experience. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Adeno-Associated Virus: Methods and Protocols provides a complete and comprehensive understanding of this multi-disciplinary and rapidly progressing field.
Gene therapy offers many conceptual advantages to treat muscle diseases, especially various forms of muscular dystrophies; however, it faces a number of unique challenges, including the need to deliver a therapeutic vector to all muscles throughout the body. In Muscle Gene Therapy: Methods and Protocols, expert researchers in the field present a collection of techniques aimed at bridging the translational gap in muscle gene therapy between the prevalent rodent models and vitally important larger animal models. Divided into three sections, this volume examines basic protocols for optimizing the muscle gene expression cassette and for evaluating the therapeutic outcomes, new developments in muscle gene therapy technology such as adeno-associated viral vector (AAV), oligonucleotide-mediated exon-skipping, and novel RNA-based strategies, and step-by-step guidance on muscle gene delivery in swine, ovine, canine, and non-human primates. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, detailed, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Muscle Gene Therapy: Methods and Protocols serves as an invaluable resource for graduate students, post-doctoral fellows, and principle investigators pursuing the crucial advancement of muscle disease gene therapy in the hope of someday curing these debilitating disorders.
This book reports the recent progress in gene and cell therapy through the liver and aims to facilitate a comprehensive understanding of the current aspects and future prospects from basic research to clinical therapies. Edited by pioneering researchers, this volume presents extensive information to principal investigators, researchers, postdocs and clinicians for examining the wide varieties of pathological conditions both inside and outside the liver. Providing not only the basic and clinical aspects of therapy, this volume is special in that it focuses on the administrative and regulatory difficulties of actual clinical application and legal regulations in different parts of the globe. By indicating the advantages and limitations of the most promising gene and cell therapies targeting the liver, this book will inspire readers to develop a feasible treatment in the next generation.
This book will contain the proceedings of the XIV International Symposium on Retinal Degeneration (RD2010), held July 13-17, 2010, in Mont-Tremblant, Quebec, Canada. The volume will present representative state-of-the-art research in almost all areas of retinal degenerations, ranging from cytopathologic, physiologic, diagnostic and clinical aspects; animal models; mechanisms of cell death; candidate genes, cloning, mapping and other aspects of molecular genetics; and developing potential therapeutic measures such as gene therapy and neuroprotective agents for potential pharmaceutical therapy.
Recent stem cell research has revealed that miRNA and RNAi-mediated gene regulation is one of the vital determinates controlling the state of cell differentiation, with the small RNAs serving as key elements involved in regulatory network control of pluripotent cell fate determination. In RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications, expert authors from laboratories across the globe contribute an accessible compendium of up-to-date, proven methods focused on the study of the titular topic. Divided into three sections, the book first gives a brief introduction to RNAi and miRNAs in stem cells, with a focus on the current status of research and future perspectives, then it continues with detailed methods and protocols for RNAi screening, transfection, and the knockdown of specific genes and pathways in several animal species, including humans and mice, concluding with a section on recently developed methods for identification of miRNAs, including a general protocol for preparation and analysis of miRNA libraries for deep sequencing, knock down of a specific gene using miRNA-based shRNA, and miRNA expression analysis using qRT-PCR. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes highlighting tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications serves as a valuable resource for scientists and aspiring graduate students interested in the intersection of RNAi, miRNA, and stem cell molecular biology and the exciting areas of medicine, including regenerative medicine, aging, cancer, and neurological disorders, that can be advanced through this expanding area of research.
Central to the synthesis of proteins, the performance of catalysis, and many other physiological processes, the aberrant expression of which can be linked to human diseases including cancers, RNA has proven to be key target for therapeutics as well as a tool for therapy. In RNA Therapeutics: Function, Design, and Delivery, expert contributors from a broad spectrum of scientific backgrounds highlight the roles that messenger RNAs and small RNAs can play in biology and medicine. While covering the five major RNA-based drugs, namely the use of ribozymes to cleave and/or correct mRNA transcript, the use of siRNA for targeted silencing of gene transcripts, the use of aptamers, like short RNA molecules, for neutralizing the protein functions, the use mRNA-transfected DCs to activate immune system against tumor cells, as well as the use of RNA to reprogram T and/or DC cell function, this extensive volume brings together the fields of coding (mRNA) and non-coding RNA such as ribozymes, RNAse P, siRNAs, and miRNAs into one convenient source. Written in the highly successful Methods in Molecular Biology (TM) series format, the cutting-edge protocol chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and practical tips on troubleshooting and avoiding known pitfalls. Also, the book contains several excellent reviews for teaching purposes. Authoritative and comprehensive, RNA Therapeutics: Function, Design, and Delivery provides key models and tools which will assist researchers in increasing our understanding of RNA functions, modifications, and their involvement in diseases in order to lead to the design of vital new RNA-based therapeutics.
This book presents and discusses current research in the study of stem cells. Topics discussed include research on adult stem cells; cell therapy applications; somatic cell nuclear transfer; stem cell research in Europe; an artificial niche for expansion of long-term engraftable hematopoietic cells; global characterisation and genomic stability of human MultiStem; haematopoietic and stromal stem cell regulation by extracellular matrix components and growth factors and stem cell divisions.
An essential manual for the future of genetic counseling Genetic counselors possess the important set of skills necessary to face the unique challenges encountered within the laboratory. As the primary liaisons between genetic technologies and patient-facing clinicians, lab counselors must have equal competency in genetic testing protocols, interpretation, and communication of clinical recommendations. Practical Genetic Counseling for the Laboratory is the first book to codify the theory and practice of laboratory genetic counseling in an accessible and comprehensive format. With contributions from laboratorians, geneticists, and genetic counselors from more than 30 institutions, it offers a manual of standards and practices that will benefit students and counselors at any career stage. Topical coverage includes: * Interpretation of genetic tests, including those specific to biochemical genetics, cytogenetics, molecular genetics, and prenatal screening * Practical guidelines for test utilization, test development, and laboratory case management * Elements for education and training in the laboratory * Counseling skills, including the consideration of ethical dilemmas, nonclinical considerations, including sales and publishing For students in this important sector of the industry or for counselors already working in it, Practical Genetic Counseling for the Laboratory offers readers a standardized approach to a dynamic subject matter that will help shape the field's future.
This fully revised and updated edition of GENETIC SKIN DISORDERS reflects the most current understanding of the diagnosis, treatment, genetic basis, and differential diagnoses of inherited skin disorders. Organized with the needs of busy clinicians in mind, it offers detailed clinical guidance on the signs, symptoms, mode of inheritance, recurrence risk, and diagnosis of over 300 skin disorders, all in an accessible, at-a-glance format. Annotated bibliographies highlight the most relevant and up-to-date medical literature. Newly compiled lists of support groups, both national and international, for patients and their families supplement the ample resources for medical professionals. Informed by the author's extensive clinical experience and suffused with a distinctive, witty voice, GENETIC SKIN DISORDERS is an ideal companion in the laboratory, clinic, or consulting room. FEATURES * Includes both disease-based chapters and an appendix of skin signs that simplifies differential diagnosis for specialists and general practitioners alike * More than 800 color photographs illustrate the full spectrum of hair, skin, and nail abnormalities * Updated to reflect current classification of inherited skin disorders and the molecular underpinnings of these conditions
This book summarizes microRNA (miRNA) biology in a variety of pathological processes, emphasizing the significant potential applications of miRNA in diagnostics and prognostics, as well as novel drug targets. The conventional techniques used for miRNA detection including standard PCR, Northern blotting, microarray and clone methods are addressed. Recent emerging strategies in miRNA detection and quantification with superior flexibility and adaptability, such as novel molecular biological techniques and locked nucleic acid (LNA) modified probes, as well as nanotechnology-based approaches, are also included. The book also highlights the latest advances in clinical-related miRNA detection methods in living cells, circulating blood and tissue, such as in situ hybridization (ISH) and molecular imaging techniques, which are useful to elucidate the biogenesis and biological function of miRNAs in vivo. Finally, the respective advantages and drawbacks of various detection techniques in this fast-moving field are discussed, along with the challenges and promising new directions. This book offers a valuable resource for analytical chemists, biologists and physicians involved in miRNA research. Dr. Xueji Zhang and Dr. Haifeng Dong are Professors at the School of Chemistry & Biological Engineering, University of Science & Technology Beijing (USTB), China. Dr. Yaping Tian is a Professor at the Department of Clinical Biochemistry, Chinese PLA General Hospital and Military Medical School, China.
Genes, which are carried on chromosomes, are the basic physical and functional units of heredity. Genes are specific sequences of bases that encode instructions on how to make proteins. Although genes get a lot of attention, it's the proteins that perform most life functions and even make up the majority of cellular structures. When genes are altered so that the encoded proteins are unable to carry out their normal functions, genetic disorders can result. Gene therapy is an experimental treatment that involves introducing genetic material into a person's cells to fight disease. Gene therapy is being studied in clinical trials for many different types of cancer and for numerous other diseases. This new book offers the latest research in a field bursting with new developments, hope and expectations.
"The definitive work in genetic evaluation of newborns. I cannot recommend it strongly enough." -Judith G. Hall As demand continues to exceed availability when it comes to clinical geneticists, Genetic Consultations in the Newborn offers an essential new resource for practitioners everywhere: a streamlined diagnostic manual that connects subtle symptoms of newborn dysmorphology to their differential diagnosis. Comprising more than 60 chapters organized by system and symptom, this book facilitates fast, expert navigation from recognition to management in syndromes that manifest during the newborn period. Richly illustrated and packed with pearls of practical wisdom from the authors' decades of practice, it empowers readers to recognize the outward signs and symptoms crucial for an effective diagnosis. For geneticists, neonatologists, pediatricians, and anyone else who cares for infants in their first days of life, Genetic Consultations in the Newborn provides an essential and unmatched resource for navigating one of the most challenging areas of clinical practice. It should not be missed.
This book provides a comprehensive view of metabolomics, from the basic concepts, through sample preparation and analytical methodologies, to data interpretation and applications in medicine. It is the first volume to cover metabolomics clinical applications while also emphasizing analytical and statistical features. Moreover, future trends and perspectives in clinical metabolomics are also presented. For researches already experienced in metabolomics, the book will be useful as an updated definitive reference. For beginners in the field and graduate students, the book will provide detailed information about concepts and experimental aspects in metabolomics, as well as examples and perspectives of applications of this strategy to clinical questions.
"Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.
Even as classic cytogenetics has given way to molecular karyotyping, and as new deletion and duplication syndromes are identified almost every day, the fundamental role of the genetics clinic remains mostly unchanged. Genetic counselors and medical geneticists explain the "unexplainable," helping families understand why abnormalities occur and whether they're likely to occur again. Chromosome Abnormalities and Genetic Counseling is the genetics professional's definitive guide to navigating both chromosome disorders and the clinical questions of the families they impact. Combining a primer on these disorders with the most current approach to their best clinical approaches, this classic text is more than just a reference; it is a guide to how to think about these disorders, even as our technical understanding of them continues to evolve. Completely updated and still infused with the warmth and voice that have made it essential reading for professionals across medical genetics, this edition of Chromosome Abnormalities and Genetic Counseling represents a leap forward in clinical understanding and communication. It is, as ever, essential reading for the field. |
You may like...
Translational Regenerative Medicine
Anthony Atala, Julie Allickson
Hardcover
R3,195
Discovery Miles 31 950
Advancing Development of Synthetic Gene…
Anandhakumar Chandran
Hardcover
R3,161
Discovery Miles 31 610
Guide To Human Gene Therapy, A
Roland W. Herzog, Sergei Zolotukhin
Paperback
R1,478
Discovery Miles 14 780
|