![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > General
This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter-and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.
This book describes the energy-law situation in Brazil. It focuses on three specific energy sectors: oil, natural gas and biofuel. The decision to concentrate on these areas takes into account the role that these energy sectors play in the economic, political and legal systems in Brazil, as well as the fact that they are the primary subjects of current discussions surrounding economic regulation in the country. The book, composed of thematic chapters authored by specialized legal researchers, analyzes the different aspects of the oil, gas and biofuels industry, starting with an introduction and technical points and followed by a discussion of the legal issues. It also considers the different legal areas used to examine the aforementioned energy sectors, such as regulatory law, environmental law, tax law, international law, among others. The book will serve as a valuable guide for researchers interested in understanding Brazilian energy law, and at the same it time presents the state of the art of studies carried out in Brazil.
Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.
In Europe, the building sector accounts for 40% of energy consumption which has a strong influence on greenhouse gas emissions. The book deals with efficient methodologies aimed to reduce greenhouse gas emissions in the building sector. This includes analyses of the building envelopes, the heating systems, the use of solar energy and the assessment of the environmental and energy sustainability of the proposed solutions. After a brief introduction to the physical fundamentals involved in the study, results are presented to support cost-effective technical strategies to promote actions for energy saving, in the most critical fields and with the most economic advantage.
This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.
This contributed volume contains the research results presented at the 4th Machining Innovations Conference, Hannover, September 2013. The topic of the conference are new production technologies in aerospace industry and the focus is on energy efficient machine tools as well as sustainable process planning. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students.
The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings  Economical and Environmental Issues Environment Energy Requirements Economic Development  Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Superconductors
Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb–Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications. Dr. Zhaoguang Hu is the vice president and chief energy specialist at the State Grid Energy Research Institute, China. Zheng Hu is a PhD candidate at the Center for Energy and Environmental Policy, University of Delaware, USA.
Interest in biofuels began with oil shocks in the 1970's, but the more rapid development and consumption of biofuel industry in recent years has been primarily driven by mandates, subsidies, climate change concerns, emissions targets and energy security. From 2004 to 2006, fuel ethanol grew by 26% and biodiesel grew by 172%. As biofuel production continues to expand, investments in capacity expansion and research and development have been made. The 2008 food crisis emphasized the need to re-examine biofuel consequences. Biofuels remain an important renewable energy resource to substitute for fossil fuels, particularly in the transportation sector, yet biofuels' success is still uncertain. The future of biofuels in the energy supply mix relies on mitigating potential and improving the environmental gains. This book brings together leading authorities on biofuel from the World Bank to examine all of the impacts of biofuel (economic, social, environmental) within a unified framework and in a global perspective, making it of interest to academics in agricultural and environmental economics as well as industry and policy-makers.
The concept of a livable smart city presented in this book highlights the relevance of the functionality and integrated resilience of viable cities of the future. It critically examines the progressive digitalization that is taking place and identifies the revolutionized energy sector as the basis of urban life. The concept is based on people and their natural environment, resulting in a broader definition of sustainability and an expanded product theory. Smart City 2.0 offers its residents many opportunities and is an attractive future market for innovative products and services. However, it presents numerous challenges for stakeholders and product developers.
The Chinese electricity sector is the largest in the world, covering well over 20% of the world's electricity supply. While many other countries liberalized their electricity systems in the 1990s, thereby creating competitive wholesale and retail electricity markets, China's move towards liberalization has advanced at a slower pace - until now. Following the China State Council's publication of the No. 9 document on 'Deepening Reform of the Power Sector', this book reflects on the ambitious new round of reforms aimed at introducing competitive wholesale electricity markets and incentive regulation for its power grids. Written in collaboration with Hao Chen, Lewis Dale and Chung-Han Yang, this book provides lessons for China's reforms from international experience, combining a detailed review of reforms from around the world with specific application to China and focuses on how the industrial price of electricity is determined in a liberalized power system.
This book examines the impact of post-colonial leadership on political integration in Nigeria, offering an in-depth understanding of the historical and contemporary forces that shape Nigeria's national politics as well as African politics generally. Okafor discusses how Nigeria's pre-colonial and colonial political histories along with contemporary external forces like neo-colonialism, as well as internal social, economic and political structures and developments, have affected emerging post-independence politics in the country. The study climaxes with an Africa-centered theory of political and integrative leadership and then uses it as a prism for analyzing six Nigerian post-independence political leaderships, encompassing Nigeria's First and Second Republics, along with their military interregna. The concluding chapter includes a discussion of the implications of the study for leadership and political integration in Africa in general.
This book analyses solar-assisted ground-source heat pump systems, a technology meant for producing heating and cooling energy for buildings. It focuses on ground source heat pump, reversible central heating and cooling system that transfer heat from or to the ground, applications which use solar thermal collectors. Providing deep insights into energy-saving, solar thermal system operating strategies, it illustrates examples of useful configurations and controlling approach for different climates for different vertical ground heat exchanger depths. Offering an overview of solar assisted ground source heat pump systems, including design principles and energy-performance data for different climates, it is a valuable resource for designers and scientists who focus on building heating and cooling technologies.
This Brief discusses the current policy environment in which the United States space program operates and proposes an industry-government partnership as a long-term policy solution. Since the Reagan administration, American space policy has increasingly sought to involve private sector operators for space. The culmination of this trend has been the Obama administration's policy of private sector transportation of crew and cargo to the International Space Station on behalf of NASA. This book proposes that future administrations extend this policy to other areas of space, including energy, in orbit manufacturing, asteroid mining, and the exploration of the Moon and Mars. The book further demonstrates how these activities can stabilize the global political system and lead to a dramatic increase in global economic growth. Finally, the book addresses one of the most important and critical issues currently facing humanity-the need for a viable, baseload, and unlimited supply of totally clean energy. An extremely cogent analysis of the interrelationship between space activity and the terrestrial economy, this book showcases the political and economic potential of the medium of space and adds greatly to the existing literature in the field. This book will be of interest to students of political science and strategic studies as well as members of the military, government space agencies, and the international aerospace industry.
This book is aimed at providing a comprehensive overview of recent developments in sustainability science and engineering. The book focuses on principles and practices and presents 18 interwoven chapters on four major themes: design for sustainability; sustainability metrics and analysis; sustainable energy; and sustainable supply/value. Significant, state-of-the-art work, methodologies, practices and plans are presented by researchers, technology developers and industry leaders. Topics discussed include: life cycle assessment; product end-of-life options; practical approaches to sustainability; environmental footprint assessment; biofuels; and sustainable supply chain management.
This book provides a succinct account of the ways in which nano technology is being applied to improve energy efficiency. The coverage includes current scanning probe techniques for electrical energy storage, energy harvesting systems and local electrochemistry as well as emerging techniques of relevance to diverse materials and devices, including advanced scanning probes for nano fabrication and nano tribology. The tools of nanotechnology, such as scanning probe microscopes and micro machines, can provide important information about the fundamental nature of space, especially the zero-point electromagnetic field. An exciting aspect of this subject is that a better understanding of the force that arises from the zero-point field, i.e., the Casimir force, may enable its control to some extent, impacting on the development of nano electromechanical systems. Readers will find this book to be a clear and concise summary of the state of the art in nanophysics and nanotechnology as they relate to energy efficiency.
This book provides a valuable resource for anyone who wishes to understand how sustainable use of energy can lead to increased efficiency of industrial supply chains and improved financial profitability. The book is organized around real examples and case studies that can be applied to real-world problems. Furthermore, insight is provided by an international panel of contributors, and the book provides comprehensive coverage of current practice and future developments in the evolution of sustainable supply chains and energy consumption. The text underlines how organizations are now looking seriously at supply chain assets in order to help their suppliers retool and focus on renewable energy. Renewable energy technology is a fast growing market with promising financial returns and substantial environmental gains; this book shows how the right management of renewable investments can have significant advantages by: * providing critical opportunities in driving costs down and making renewable energy sources more competitive with conventional energy; * making infrastructure expansion easier; * increasing employment in manufacturing and services supply chains in order to support renewable energy generation; and * mitigating the impacts of climate change. This book is intended for business professionals, researchers and students working in supply chain management or energy management.
With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines operating in accordance with closed cycles is provided to develop ideas and discussions strictly founded on the basic thermodynamic facts that control the closed cycles operation and design. Closed Power Cycles: Thermodynamic Fundamentals and Applications also contains numerous examples which have been carried out with the help of the Aspen Plus (R)R program. Including chapters on binary cycles, the organic Rankine cycle and real closed gas cycles, Closed Power Cycles: Thermodynamic Fundamentals and Applications acts a solid introduction and reference for post-graduate students and researchers working in applied thermodynamics and energy conversion with thermodynamic engines.
Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.
The dissertation investigates the scientific and business factors that have resulted in air-conditioning being a major contributor to climate-change. With his architectural background, the author demonstrates how a design methodology, not commonly adopted in scientific studies, may actually be a suitable way of dealing with a complex problem: the 'business as usual' scenario involving building science, sociological values and consumer behavior. Using his innovations as case studies, the author shows how good ideas cannot be evaluated on scientific merit alone and demonstrates why commercialization may have a pivotal role in deployment of research-based technology. He advances the theory of personalized thermal comfort which can potentially resolve the air-conditioning conundrum.
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180 Degrees bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analytical solutions. The book will be a valuable read for research experts and practitioners in the field of heat and mass transfer.
This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.
Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.
This book covers multi-band Galileo receivers (especially E1-E5 bands of Galileo) and addresses all receiver building blocks, from the antenna and front end, through details of the baseband receiver processing blocks, up to the navigation processing, including the Galileo message structure and Position, Velocity, Time (PVT) computation. Moreover, hybridization solutions with communications systems for improved localization are discussed and an open-source GNSS receiver platform (available for download) developed at Tampere University of Technology (TUT) is addressed in detail.
This volume presents current thoughts, research, and findings that were presented at a summit focusing on energy as a cross-cutting concept in education, involving scientists, science education researchers and science educators from across the world. The chapters cover four key questions: what should students know about energy, what can we learn from research on teaching and learning about energy, what are the challenges we are currently facing in teaching students this knowledge, and what needs be done to meet these challenges in the future? Energy is one of the most important ideas in all of science and it is useful for predicting and explaining phenomena within every scientific discipline. The challenge for teachers is to respond to recent policies requiring them to teach not only about energy as a disciplinary idea but also about energy as an analytical framework that cuts across disciplines. Teaching energy as a crosscutting concept can equip a new generation of scientists and engineers to think about the latest cross-disciplinary problems, and it requires a new approach to the idea of energy. This book examines the latest challenges of K-12 teaching about energy, including how a comprehensive understanding of energy can be developed. The authors present innovative strategies for learning and teaching about energy, revealing overlapping and diverging views from scientists and science educators. The reader will discover investigations into the learning progression of energy, how understanding of energy can be examined, and proposals for future directions for work in this arena. Science teachers and educators, science education researchers and scientists themselves will all find the discussions and research presented in this book engaging and informative. |
You may like...
Cross-Scale Coupling and Energy Transfer…
Yukitoshi Nishimura, Olga Verkhoglyadova, …
Paperback
R3,336
Discovery Miles 33 360
Nanodust in the Solar System…
Ingrid Mann, Nicole Meyer-Vernet, …
Hardcover
R2,665
Discovery Miles 26 650
Order Statistics: Applications, Volume…
Narayanaswamy Balakrishnan, C.R. Rao
Hardcover
R3,377
Discovery Miles 33 770
Jokers Wild - Legalized Gambling in the…
Thomas Barker, Marjie T Britz
Hardcover
|