![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > General
This book comprises select peer-reviewed papers from the International Conference on Emerging Research in Civil, Aeronautical and Mechanical Engineering (ERCAM-2019). The contents focus on the latest research trends in engineering materials, mechanics, structures and systems. A wide variety of interesting problems in civil, aeronautical and mechanical engineering have been addressed in this book through various experimental, numerical and analytical methods. The topics covered also provide insight into the challenges prevailing in the aforementioned engineering domains and the potential solutions to address those. Given the contents, the book is a valuable resource for students as well as researchers.
A real-world guide to successful water desalination systems for public water utilities The Water Desalting Planning Guide for Water Utilities offers practical guidance on the planning, design, and implementation of successful water desalination systems for decision-makers at public water utilities. Complete coverage ranges from vital background material on regulatory and standards issues to a wide range of insightful case studies illustrating how the latest processes work in the real world, including reverse osmosis, membrane technology, thermal technology, ion exchange, and freeze/thaw systems. In a clear and easy-to-use format, the Water Desalting Planning Guide for Water Utilities covers the conversion of saline water sources and cost data, along with all the key issues a utility typically faces when implementing a desalting project, including:
Packed with dozens of informative photographs and illustrations, Water Desalting Planning Guide for Water Utilities is an invaluable resource for water treatment engineers and operators, environmental professionals, and professional and civic groups involved with land permitting, zoning, and regulation.
This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
Using topics of critical and creative thinking, Critical Thinking, Idea Innovation, and Creativity discusses methods of solving complex problems, demonstrates the benefits of using the methods of imaginative thinking, identifies ways to overcome problems and inhibitors such as a lack of confidence, provides guidelines for assessing creative experiences, and encourages the application of the methods to leadership, research, and decision making. It allows readers to turn their unidimensional technical knowledge into a multi-dimensional knowledge framework that will provide a broader and more realistic framework for the solution of complex problems. Emphasis is placed on the fundamental concepts of critical and creative thinking and idea innovation, and each chapter presents numerous activities to accompany the knowledge-based educational material provided. Features: Provides educational material on creativity in a format that stresses application. An array of creative thinking tools will enable the reader to develop imaginative ideas Emphasizes ways that critical thinking, idea innovation, and creativity can enhance a reader's ability to solve problems related to leadership, the conduct of research, making decisions, and solving complex problems Focuses on ways to improve the reader's thinking skills, which will enhance the likelihood of developing novel solutions to complex problems; this skill set includes skills like curiosity, questioning, and skepticism, which are central to efficiently solving complex problems and meeting the requirements of effective leadership Includes numerous activities in each chapter that will enable readers to apply the methods and develop actual experience at critical and creative thinking; these activities are appropriate for use either by individuals or by small groups
This book contributes to the debate about the suitability and challenges of the Smart Water Management (SWM) approach. Smart Water Management has increasingly been promoted to manage water and wastewater more efficiently and cost effectively by industries and utilities in urban contexts at regional or city scales, while reducing overall consumption. It is based on the use of Information and Communication Technology (ICT) to provide real-time, automated data to resolve water challenges. Many of these technologies are complex and costly, however, and the approach tends to overlook cheaper and less high-tech (softer) approaches to address the same problems. Yet there may be opportunities for using them even in resource short rural communities in developing countries. The book includes examples of SWM systems in practice in diverse locations from Korea, Mexico, Paris, the Canary Islands and southern Africa, aimed at addressing a diverse set of problems, including monitoring water supply to refugees. Critical voices highlight the need for smart institutions to accompany smart technologies, the absurdity of applying SWM to dysfunctional legacy infrastructure systems, whether its adoption raises moral hazards, and whether SWM is the latest example of hegemonic masculinity in water management. The chapters in this book were originally published in Water International.
Ever-increasing population growth has caused a proportional increased demand for water, and existing water sources are depleting day by day. Moreover, with the impact of climate change, the rates of rainfall in many regions have experienced a higher degree of variability. In many cities, government utilities have been struggling to maintain sufficient water for the residents and other users. The Handbook of Irrigation Hydrology and Management examines and analyzes irrigated ecosystems in which water storage, applications, or drainage volumes are artificially controlled in the landscape and the spatial domain of processes varies from micrometers to tens of kilometers, while the temporal domain spans from seconds to centuries. The continuum science of irrigation hydrology includes the surface, subsurface (unsaturated and groundwater systems), atmospheric, and plant subsystems. Further, the book includes coverage of environmental and economic impacts, water quality issues, water harvesting, satellite measurements for irrigation, and more. Features: Offers water-saving strategies to increase the judicious use of scarce water resources Presents strategies to maximize agricultural yield per unit of water used for different regions Compares irrigation methods to offset changing weather patterns and impacts of climate change
Ever-increasing population growth has caused a proportional increased demand for water, and existing water sources are depleting day by day. Moreover, with the impact of climate change, the rates of rainfall in many regions have experienced a higher degree of variability. In many cities, government utilities have been struggling to maintain sufficient water for the residents and other users. The Handbook of Irrigation Hydrology and Management examines and analyzes irrigated ecosystems in which water storage, applications, or drainage volumes are artificially controlled in the landscape and the spatial domain of processes varies from micrometers to tens of kilometers, while the temporal domain spans from seconds to centuries. The continuum science of irrigation hydrology includes the surface, subsurface (unsaturated and groundwater systems), atmospheric, and plant subsystems. Further, the book addresses the best practices for various types of irrigation methods including pressure, smart, surface and subsurface, and presents solutions for water scarcity and soil salinity in irrigation. Features: Offers water-saving strategies to increase the judicious use of scarce water resources Presents strategies to maximize agricultural yield per unit of water used for different regions Compares irrigation methods to offset changing weather patterns and impacts of climate change
This book 'Extremophiles: Wastewater and Algal Biorefinery' explores the potential of extremophiles/extremotolerant organisms in wastewater treatment, biorefining of algal biomass and in the treatment of industrial waste effluent. The book provides a holistic overview about the current status of extremophiles in waste water treatment and various industrial processes. The chapters comprehensively cover the scientific and research findings on various industrial applications of extremophiles such as biofuels, extremozymes, electricity generation, biofilms, microbial corrosion and waste water treatment etc. This book is an integrated source of literature for the scientists, engineers, academicians, and students working in the area of extremophiles, microbial technology and biorefinery.
Ever-increasing population growth has caused a proportional increased demand for water, and existing water sources are depleting day by day. Moreover, with the impact of climate change, the rates of rainfall in many regions have experienced a higher degree of variability. In many cities, government utilities have been struggling to maintain sufficient water for the residents and other users. The Handbook of Irrigation Hydrology and Management examines and analyzes irrigated ecosystems in which water storage, applications, or drainage volumes are artificially controlled in the landscape and the spatial domain of processes varies from micrometers to tens of kilometers, while the temporal domain spans from seconds to centuries. The continuum science of irrigation hydrology includes the surface, subsurface (unsaturated and groundwater systems), atmospheric, and plant subsystems. Further, the book includes practical case studies from around the world, including locations such as Africa, Australia, China, India, the Middle East, the United States, and more. Features: Offers water-saving strategies to increase the judicious use of scarce water resources Presents strategies to maximize agricultural yield per unit of water used for different regions Compares irrigation methods to offset changing weather patterns and impacts of climate change
Sustainable and resilient critical infrastructure systems is an emerging paradigm in an evolving era of depleting assets in the midst of natural and man-made threats to provide a sustainable and high quality of life with optimized resources from social, economic, societal and environmental considerations. The increasing complexity and interconnectedness of civil and other interdependent infrastructure systems (electric power, energy, cyber-infrastructures, etc.) require inter- and multidisciplinary expertise required to engineer, monitor, and sustain these distributed large-scale complex adaptive infrastructure systems. This edited book is motivated by recent advances in simulation, modeling, sensing, communications/information, and intelligent and sustainable technologies that have resulted in the development of sophisticated methodologies and instruments to design, characterize, optimize, and evaluate critical infrastructure systems, their resilience, and their condition and the factors that cause their deterioration. Specific topics discussed in this book include, but are not limited to: optimal infrastructure investment allocation for sustainability, framework for manifestation of tacit critical infrastructure knowledge, interdependencies between energy and transportation systems for national long term planning, intelligent transportation infrastructure technologies, emergent research issues in infrastructure interdependence research, framework for assessing the resilience of infrastructure and economic systems, maintenance optimization for heterogeneous infrastructure systems, optimal emergency infrastructure inspection scheduling, and sustainable rehabilitation of deteriorated transportation infrastructure systems.
This book entails the developments in the field of e-waste management with particular focus on urban mining, sustainability, and circular economy aspects. It further explains e-waste recycling technologies, supply chain aspects, e-waste disposal in IT industries including health and environmental effects of E-waste recycling processes and associated issues, challenges, and solutions. Further, it describes economic potential of resource recovery from e-waste. Features: Covers recent developments in e-waste management. Explores technological advancements such as nanotech from e-waste, MREW, fungal biotech and so forth. Reviews electronic component recycling aspects. Discusses implementation of circular economy in e-waste sector. Includes urban mining and sustainability aspects of e-waste. This book is aimed at graduate students and researchers in environmental engineering, waste management, urban mining, circular economy, waste processing, electronics, and telecommunication engineering, electrical and electronics engineering, and chemical engineering.
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
The focus of municipalities has been on the supply of sufficient water quantities to the public with less attention paid to water quality. The deteriorating quality of raw water sources necessitates increased attention to water quality with professional scientists playing a central role at municipalities and water boards together with professional engineers. With many stringent regulations on the quality of drinking water and recreational water bodies, the young municipal chemist needs a handy manual to assist in the often neglected and complicated field of municipal water management. Grounded in Science, Introduction to Municipal Water Quality Management not only links theory and regulations in practice but also offers simple numerical examples to better understand the rules and encourage a quantitative application to everyday problems. Developed from a series of lectures between 2015 and 2019, Introduction to Municipal Water Quality Management will give young professionals the confidence to analyse their results and apply their knowledge in a numerical fashion.
This is a clear, comprehensive, full-color introduction and reference for students and professionals who are creating engineering drawings and graphics with CAD software or by hand. It provides excellent technical detail and motivating real-world examples, illuminating theory with a colorful, highly-visual format complemented with concise text. Designed for busy, visually-oriented learners, this guide expands on well-tested material, fully updated for the latest ASME standards, materials, industries and production processes. Its up-to-date examples range from mechanical, plastic, and sheet metal drawings to modern techniques for civil engineering, architecture, and rapid prototyping. Throughout, clear, easy, step-by-step descriptions teach essential sketching and visualization techniques, including the use of 3D and 2D CAD. All color visuals are tightly integrated with text to promote rapid mastery. Colorful models and animations on a companion website bring the material to life, and hands-on projects and tear-out worksheets make this guide ideal both for learning and for ongoing reference.
Covers development of new novel reactor configurations for wastewater treatment Describes handling and removal of emerging contaminants like pharmaceutical compounds, endocrine disruptors and disinfection by-products Deliberates combination of wastewater and micro pollution Contains in-depth discussion on faecal sludge treatment and disposal Highlights new economically feasible techniques to enhance biogas recovery from treatment plant sludges
1. Demonstrates the recent advances in geospatial analytics tools, technologies, and algorithms. 2. Provides insight and direction to the geospatial community regarding the future trends in scalable and intelligent geospatial analytics. 3. Exhibits recent geospatial applications and demonstrates innovative ways to use big geospatial data to address various domain-specific, real-world problems. 4. Recognizes the analytical and computational challenges posed and opportunities provided by the increased volume, velocity, and veracity of geospatial data.
This work is a compilation of fundamental solutions (or Green's functions) for classical or canonical problems in elastodynamics presented with a common format and notation. These formulas describe the displacements and stresses elicited by dynamic sources in solid elastic media like full spaces, half-spaces, strata and plates in both two and three dimensions, using the three major coordinate systems (Cartesian, cylindrical and spherical), and also for transient and harmonic motions. Such formulas are useful for numerical methods and practical application to problems of wave propagation in elasticity, soil dynamics, earthquake engineering, mechanical vibration, or geophysics. These formulas were heretofore only found scattered throughout the literature. The solutions are tabulated without proof, but giving reference to appropriate modern papers and books containing full derivations. Most formulas in the book have been programmed and tested within the MATLAB environment. The program listings are available for free download on the book's website.
An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems.
• Explores novel membrane materials and systems from preparation methods, materials selection, and their application in monitoring, fouling control, and performance enhancement. • Examines the mechanism of fouling prevention and cleaning in various electrically conductive materials. • Evaluates the scalability of antifouling materials and coatings, as well as electrically enhanced processes for monitoring and control in membrane separation technology • Assesses advantages and limitations of applying electrically conductive membrane systems to fouling control for specific water treatment applications. • Provides a critical review of scientific literature in the specialized area of electrical conductive materials and systems for membrane technology.
Urban water management has to take an integrated approach that prioritizes sustainable drainage systems (SuDS) over gray infrastructure. This book elaborates on the planning and evaluation of pipework drainage systems with a focus on modern-day constraints to deliver a solution that favors sustainability as the overarching goal. The book includes a technical section on design of gray and green infrastructure, considering the total lifecycle costs of drainage systems. Advanced computer simulation techniques are discussed after covering the derivation of both standard and empirical equations for appropriate hydrology and hydraulics. The book provides an incorporation of reliability analyses for both green and gray infrastructure starting with techniques for forecasting flows, hydraulic performance, and lifecycle costs. The work also involves 3-D modeling, geospatial and big data analysis, and how these techniques are applied into city management—particularly beneficial to municipal engineers who are increasingly becoming involved in mapping the underground. Soil mechanics and subsurface drainage systems are analyzed and structural aspects of sewers are included. Finally, soil behavior in shear, retaining wall structures, and tunneling is briefly featured in the book. This book will be of interest to (under)graduate and postgraduate engineering students, drainage engineers, urban planners, architects, water engineers, developers, construction contractors, and municipal engineers.
The over-exploitation of groundwater and marked changes in climate over recent decades has led to unacceptable declines in groundwater resources. Under the likely scarcity of available water resources in the near future, it is critical to quantify and manage the available water resources. With increasing demand for potable water for human consumption, agriculture, and industrial uses, the need to evaluate the groundwater development, management, and productivity of aquifers also increases. Laboratory Manual for Groundwater, Wells, and Pumps serves as a valuable resource and provides a multi-disciplinary overview for academics, administrators, scientists, policymakers, and professionals involved in the managing sustainable groundwater development programs. It includes practical guidance on the measurement of groundwater flow, soil properties, aquifer properties, wells and their design, as well as the latest state-of-the-art information on pumps and their testing, and groundwater modeling. Features: Covers geographic information system-based studies, advanced methodologies, and their applications and groundwater modeling Examines groundwater exploration, planning and designing, and methods for formulating strategies for sustainable management and development Serves as a reference for practitioners on practical applications and frequently occurring issues of ground-water investigations, development, and management.
This collection breaks new ground by investigating applications of degrowth in a range of geographic, practical and theoretical contexts along the food chain. Degrowth challenges growth and advocates for everyday practices that limit socio-metabolic energy and material flows within planetary constraints. As such, the editors intend to map possibilities for food for degrowth to become established as a field of study. International contributors offer a range of examples and possibilities to develop more sustainable, localised, resilient and healthy food systems using degrowth principles of sufficiency, frugal abundance, security, autonomy and conviviality. Chapters are clustered in parts that critically examine food for degrowth in spheres of the household, collectives, networks, and narratives of broader activism and discourses. Themes include broadening and deepening concepts of care in food provisioning and social contexts; critically applying appropriate technologies; appreciating and integrating indigenous perspectives; challenging notions of 'waste', 'circular economies' and commodification; and addressing the ever-present impacts of market logic framed by growth. This book will be of greatest interest to students and scholars of critical food studies, sustainability studies, urban political ecology, geography, environmental studies such as environmental sociology, anthropology, ethnography, ecological economics and urban design and planning.
The number of Earth observation satellites launched in recent years is growing exponentially, along with the datasets they gather from free-to-access and commercial providers. The second edition of Practical Handbook of Remote Sensing is updated with new explanations and practical examples using the Copernicus satellite data and new versions of the open-source software. A new chapter and new applications have also been added. Thoroughly revised, the handbook continues to be a practical "how-to" remote sensing guide for those who want to use the technology, understand what is available, how to access it, and answer questions about our planet, but do not necessarily want to become scientific experts.
"This book provides up-to-date knowledge of space debris and valuable insights on how to grapple with this issue from legal, technical, economical and societal aspects. I would strongly recommend that everyone who is working on space development and utilizations and even non-specialists once read this book and think over how human being should be faced with this issue." –Prof. Shinichi Nakasuka, University of Tokyo, Japan Space Debris Peril: Pathways to Opportunities takes readers through the wide spectrum of problems created by space debris – including technical, political, legal and socio-economical aspects – and suggests ways to mitigate its negative consequences and create new opportunities. With chapter contributions from authors at world-renowned universities, private or public entities, and research institutes active in the field of space debris mitigation, space policy and law, risk and resilience, liability and insurance, this book provides a comprehensive introduction to the subject helping the reader to grasp the whole picture of the current space debris remediation challenges. This book will be of interest to the scientific communities, policy makers, business developers, (re)insurers and international standards developers for space operations and orbital debris mitigation. Also, it should appeal to a broader audience among non-specialists in various sectors and the general public. Key features: Brings together interdisciplinary perspectives on the topic in one, cohesive book Chapter contributions from specialists in this interdisciplinary field from around the globe Up-to-date information with the latest developments
The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries. |
You may like...
Mem-elements for Neuromorphic Circuits…
Christos Volos, Viet-Thanh Pham
Paperback
R3,613
Discovery Miles 36 130
Civil Engineering Materials - From…
Qiang Yuan, Zanqun Liu, …
Paperback
R3,492
Discovery Miles 34 920
Principles of Foundation Engineering, SI…
Braja Das, Nagaratnam Sivakugan
Paperback
|