![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. * The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. * The exercises come in groups of two and often four similar ones.
 From the Preface: “There are three volumes. The first one contains a curriculum vitae, a «Brève Analyse des Travaux» and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposés 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg... Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation.â€
This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler-Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler-Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm-Liouville problems. Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Symbolic Algebra and Calculus Tools introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic variables and functions, you will learn how to solve equations in MATLAB, both symbolically and numerically, and how to simplify the results. Extensive coverage of polynomial solutions, inequalities and systems of equations are covered in detail. You will see how MATLAB incorporates vector, matrix and character variables, and functions thereof. MATLAB is a powerful symbolic manipulator which enables you to factorize, expand and simplify complex algebraic expressions over all common fields (including over finite fields and algebraic field extensions of the rational numbers). With MATLAB you can also work with ease in matrix algebra, making use of commands which allow you to find eigenvalues, eigenvectors, determinants, norms and various matrix decompositions, among many other features. Lastly, you will see how you can use MATLAB to explore mathematical analysis, finding limits of sequences and functions, sums of series, integrals, derivatives and solving differential equation.
Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in "light" calculus - mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management information systems. The first chapter contains a historical background of calculus. Every scientific achievement involves people and therefore characterized by victories and disappointments, intrigues and hope. All of these elements exist in the story behind calculus and when you add the time dimension, starting 2400 years ago, it is a saga. We hope the reader enjoys reading this chapter as much as we enjoyed the writing. In addition to classic calculus the book provides tools for practical applications such as Fourier series, Lagrange multipliers and elementary numerical methods.
This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
Developing algorithms for multi-dimensional Fourier transforms, this book presents results that yield highly efficient code on a variety of vector and parallel computers. By emphasising the unified basis for the many approaches to both one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimising implementations. It will thus be of great interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing.
In September 1998, during the 'International Workshop on Analysis and Vibrat ing Systems' held in Canmore, Alberta, Canada, it was decided by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series 'Operator Theory: Advances and Applications'. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now presented to the reader. Regarding accep tance of papers we followed the usual rules of the journal 'Integral Equations and Operator Theory'. The papers are dedicated to different problems in matrix and operator theory, especially to the areas in which Peter contributed so richly. At our request, Peter agreed to write an autobiographical paper, which appears at the beginning of the volume. It continues with the list of Peter's publications. We believe that this volume will pay tribute to Peter on his outstanding achievements in different areas of mathematics. 1. Gohberg, H. Langer P ter Lancast r *1929 Operator Theory: Advances and Applications, Vol. 130, 1- 7 (c) 2001 Birkhiiuser Verlag Basel/Switzerland My Life and Mathematics Peter Lancaster I was born in Appleby, a small county town in the north of England, on November 14th, 1929. I had two older brothers and was to have one younger sister. My family moved around the north of England as my father's work in an insurance company required."
This book is de- voted to some topical prob- lems and various applica- tions of Operator Theory and to its interplay with many other fields of analysis as modern approximation the- ory, theory of dynamic sys- tems, harmonic analysis and complex analysis. It consists of 20 carefully selected sur- veys and research-expository papers. Their scope gives a representative status report on the field drawing a pic- ture of a rapidly developing domain of analysis. An abun- dance of references completes the picture. All papers included in the volume originate from lectures delivered at the l1th edition of the International Workshop on Operator The- ory and its Applications (IWOTA-2000, June 13-16, Bordeaux). Some information about the conference, including the complete list of participants, can be found on forthcoming pages. The editors are indebted to A.Sudakov for helping them in polishing and assembling original TeX files. A. Borichev and N. Nikolski Talence, May 2001 v vii International Workshop on Operator Theory and Its Applications (June 13-June 16, 2000, Universite Bordeaux 1) The International Workshop on Operator Theory and its Applications (IWOTA) is a satellite meeting of the international symposium on the Mathe- matical Theory of Networks and Systems (MNTS). In 2000, the MNTS is held in Perpignan, France, June 19-23. IWOTA 2000 was the eleventh workshop of this kind.
Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ( 261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology."
A collection of 25 papers dedicated to Israel Gohberg, an outstanding leader in operator theory. Also containing a review of his contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
This volume contains the proceedings of "PDE 2000", the international conference on partial differential equations held July 24 -28, 2000, in Clausthal. The confer- ence took place during the EXPO 2000 and was sponsored by the Land Nieder- sachsen, the Deutsche Forschungsgemeinschaft, the Bergstadt Clausthal-Zellerfeld and the Kreissparkasse Clausthal-Zellerfeld. This conference continues a series: Ludwigfelde 1976, Reinhardsbrunn 1985, Holz- hau 1988, Breitenbrunn 1990, Lambrecht 1991 (proceedings in Operator Theory: Advances and Applications, Vol. 57, Birkhauser Verlag 1992), Potsdam 1992 and 1993, Holzhau 1994 (proceedings in Operator Theory: Advances and Applications, Vol. 78, Birkhauser Verlag 1995), Caputh 1995 and Potsdam 1996 (proceedings in Mathematical Research, Vol. 100, Akademie Verlag 1997). The intention of the organizers was to bring together specialists from different areas of modern analysis, mathematical physics and geometry, to discuss not only the recent progress in their own fields but also the interaction between these fields. The special topics of the conference were spectral and scattering theory, semiclas- sical and asymptotic analysis, pseudodifferential operators and their relation to geometry, as well as partial differential operators and their connection to stochas- tic analysis and to the theory of semigroups. The scientific advisory board of the conference in Clausthal consisted of M. Ben- Artzi (Jerusalem), Chen Hua (Peking), M. Demuth (Clausthal), T. Ichinose (Kanazawa), 1. Rodino (Thrin), B.-W. Schulze (Potsdam) and J. Sjostrand (Paris).
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r *. . . * rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . * [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r* J J J J J where Aj is a square matrix of size nj x n* say. B and C are j j j matrices of sizes n. x m and m x n . * respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
"Signal Processing and Systems Theory" is concerned with the study of H-optimization for digital signal processing and discrete-time control systems. The first three chapters present the basic theory and standard methods in digital filtering and systems from the frequency-domain approach, followed by a discussion of the general theory of approximation in Hardy spaces. AAK theory is introduced, first for finite-rank operators and then more generally, before being extended to the multi-input/multi-output setting. This mathematically rigorous book is self-contained and suitable for self-study. The advanced mathematical results derived here are applicable to digital control systems and digital filtering.
Fuzzy Algorithms for Control gives an overview of the research results of a number of European research groups that are active and play a leading role in the field of fuzzy modeling and control. It contains 12 chapters divided into three parts. Chapters in the first part address the position of fuzzy systems in control engineering and in the AI community. State-of-the-art surveys on fuzzy modeling and control are presented along with a critical assessment of the role of these methodologists in control engineering. The second part is concerned with several analysis and design issues in fuzzy control systems. The analytical issues addressed include the algebraic representation of fuzzy models of different types, their approximation properties, and stability analysis of fuzzy control systems. Several design aspects are addressed, including performance specification for control systems in a fuzzy decision-making framework and complexity reduction in multivariable fuzzy systems. In the third part of the book, a number of applications of fuzzy control are presented. It is shown that fuzzy control in combination with other techniques such as fuzzy data analysis is an effective approach to the control of modern processes which present many challenges for the design of control systems. One has to cope with problems such as process nonlinearity, time-varying characteristics for incomplete process knowledge. Examples of real-world industrial applications presented in this book are a blast furnace, a lime kiln and a solar plant. Other examples of challenging problems in which fuzzy logic plays an important role and which are included in this book are mobile robotics and aircraft control. The aim of this book is to address both theoretical and practical subjects in a balanced way. It will therefore be useful for readers from the academic world and also from industry who want to apply fuzzy control in practice.
The Fourier transform is one of the most important mathematical tools in a wide variety of science and engineering fields. Its application - as Fourier analysis or harmonic analysis - provides useful decompositions of signals into fundamental ('primitive') components, giving shortcuts in the computation of complicated sums and integrals, and often revealing hidden structure in the data. Fourier Transforms: An Introduction for Engineers develops the basic definitions, properties and applications of Fourier analysis, the emphasis being on techniques for its application to linear systems, although other applications are also considered. The book will serve as both a reference text and a teaching text for a one-quarter or one-semester course covering the application of Fourier analysis to a wide variety of signals, including discrete time (or parameter), continuous time (or parameter), finite duration, and infinite duration. It highlights the common aspects in all cases considered, thereby building an intuition from simple examples that will be useful in the more complicated examples where careful proofs are not included.Fourier Analysis: An Introduction for Engineers is written by two scholars who are recognized throughout the world as leaders in this area, and provides a fresh look at one of the most important mathematical and directly applicable concepts in nearly all fields of science and engineering. Audience: Engineers, especially electrical engineers. The careful treatment of the fundamental mathematical ideas makes the book suitable in all areas where Fourier analysis finds applications.
This volume is devoted to some topical problems and various applications of operator theory and its interplay with modern complex analysis. 30 carefully selected surveys and research papers are united by the "operator theoretic ideology" and systematic use of modern function theoretical techniques.
In "The Cartoon Guide to Calculus", master cartoonist and former Harvard calculus instructor Larry Gonick offers a complete and up-to-date illustrated course in college-level calculus. Using graphics and humor to lighten what is frequently a tough subject, Gonick entertainingly teaches all of the course essentials, functions, limits, derivatives, and integrals, with numerous examples and applications. He concludes with a bemused look at the paradoxes at the heart of calculus and the foundations of mathematics. And in an exciting first for the "Cartoon Guide" series, each chapter includes helpful problem sets, designed to help readers cement the lessons learned in each section. Combining entertainment and education, this is the perfect supplement for any study of calculus, whether readers are high school or college students, independent learners, or just lovers of Larry Gonick's bestselling, award-winning cartoon guides.
This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.
This means that semigroup theory may be applied directly to the study of the equation I'!.f = h on M. In [45] Yau proves that, for h ~ 0, there are no nonconstant, nonnegative solutions f in [j' for 1 < p < 00. From this, Yau gets the geometric fact that complete noncom pact Riemannian manifolds with nonnegative Ricci curvature must have infinite volume, a result which was announced earlier by Calabi [4]. 6. Concluding Remarks In several of the above results, positivity of the semigroup plays an important role. This was also true, although only implicitly, for the early work of Hille and Yosida on the Fokker-Planck equation, i.e., Equation (4) with c = O. But it was Phillips [41], and Lumer and Phillips [37] who first called attention to the importance of dissipative and dispersive properties of the generator in the context of linear operators in a Banach space. The generation theorems in the Batty-Robinson paper appear to be the most definitive ones, so far, for this class of operators. The fundamental role played by the infinitesimal operator, also for the understanding of order properties, in the commutative as well as the noncommutative setting, are highlighted in a number of examples and applications in the different papers, and it is hoped that this publication will be of interest to researchers in a broad spectrum of the mathematical sub-divisions.
The present monograph has points in common with two branches of analysis. One of them is the variational-difference method (the finite element method), the other is the constructive theory of functions. The starting point is the construction of special classes of coordinate functions for the variational-difference method. It is based on elementary transformations .of the independent variables of given "primitive" functions. After the construction of the coordinate functions, the next step is to approximate functions of a given class by linear combinations of the coordinate functions, and to derive in some appropriate norm an estimate of the error. Clearly, this is a problem closely connected with the constructive theory of functions. The monograph contains 11 chapters. Chapter I discusses Courant's basic idea which is central to the construction of variational-difference methods. One of Courant's examples, from which the notion of a primitive function follows naturally, is examined in some detail. The general definition of a primitive function and the method of construction for the corresponding coordinate functions are given and discussed. Chapters II-VI are more closely connected with the constructive theory of functions. The completeness of the coordinate systems defined in Chapter I are studied, as well as the order of approximation obtained through the use of linear combinations of these functions. Their completeness in Sobolev spaces are examined in Chapter II, while related orders of approximation are derived in Chapter III.
This book, based on the course given by the author at the College of Mathematics of the Independent University of Moscow, introduces the reader to the language of generating functions, which is nowadays the main language of enumerative combinatorics. It starts with definitions, simple properties, and numerous examples of generating functions. It then discusses topics, such as formal grammars, generating functions in several variables, partitions and decompositions, and the exclusion-inclusion principle. In the final chapter, the author describes applications of generating functions to enumeration of trees, plane graphs, and graphs embedded in two-dimensional surfaces. Throughout the book, the reader is motivated by interesting examples rather than by general theories. It also contains a lot of exercises to help the reader master the material. Little beyond the standard calculus course is necessary to understand the book. It can serve as a text for a one-semester undergraduate course in combinatorics. |
![]() ![]() You may like...
Mathematical Principles of Fuzzy Logic
Vil'em Novak, Irina Perfilieva, …
Hardcover
R5,771
Discovery Miles 57 710
Decision Making Theories and Methods…
Shuping Wan, Jiuying Dong
Hardcover
R2,915
Discovery Miles 29 150
Towards Efficient Fuzzy Information…
Chongfu Huang, Yong Shi
Hardcover
R3,101
Discovery Miles 31 010
Advances in Computational Intelligence…
Hans-Jurgen Zimmermann, Georgios Tselentis, …
Hardcover
R4,448
Discovery Miles 44 480
|