![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces. Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, MAA Press.
Calculus. For some of us, the word conjures up memories of ten-pound textbooks and visions of tedious abstract equations. And yet, in reality, calculus is fun, accessible, and surrounds us everywhere we go. In "Everyday Calculus," Oscar Fernandez shows us how to see the math in our coffee, on the highway, and even in the night sky. Fernandez uses our everyday experiences to skillfully reveal the hidden calculus behind a typical day's events. He guides us through how math naturally emerges from simple observations--how hot coffee cools down, for example--and in discussions of over fifty familiar events and activities. Fernandez demonstrates that calculus can be used to explore practically any aspect of our lives, including the most effective number of hours to sleep and the fastest route to get to work. He also shows that calculus can be both useful--determining which seat at the theater leads to the best viewing experience, for instance--and fascinating--exploring topics such as time travel and the age of the universe. Throughout, Fernandez presents straightforward concepts, and no prior mathematical knowledge is required. For advanced math fans, the mathematical derivations are included in the appendixes. Whether you're new to mathematics or already a curious math enthusiast, "Everyday Calculus" invites you to spend a day discovering the calculus all around you. The book will convince even die-hard skeptics to view this area of math in a whole new way.
COLLEGE ALGEBRA AND CALCULUS: AN APPLIED APPROACH, 2E, International Edition provides a comprehensive resource for college algebra and applied calculus courses. The mathematical concepts and applications are consistently presented in the same tone and pedagogy to promote confidence and a smooth transition from one course to the next. The consolidation of content for two courses in a single text saves instructors time in their course-and saves students the cost of an extra textbook.
The classical sampling problem is to reconstruct entire functions with given spectrum $S$ from their values on a discrete set $L$. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets $L$ the exponential system with frequencies in $L$ forms a frame in the space $L^2(S)$. The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in $S$ and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum $S$ and the discrete set $L$ play a crucial role in these problems. After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena. The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, such as Minkowski's lattice, Kolmogorov's width, and Meyer's quasicrystals. The book is addressed to graduate students and researchers interested in analysis and its applications. Due to its many exercises, mostly given with hints, the book could be useful for undergraduates.
A Guide to the Evaluation of Integrals Special Integrals of Gradshetyn and Ryzhik: the Proofs provides self-contained proofs of a variety of entries in the frequently used table of integrals by I.S. Gradshteyn and I.M. Ryzhik. The book gives the most elementary arguments possible and uses Mathematica (R) to verify the formulas. You will discover the beauty, patterns, and unexpected connections behind the formulas. Volume II collects 14 papers from Revista Scientia covering elliptic integrals, the Riemann zeta function, the error function, hypergeometric and hyperbolic functions, Bessel-K functions, logarithms and rational functions, polylogarithm functions, the exponential integral, and Whittaker functions. Many entries have a variety of proofs that can be evaluated using a symbolic language or point to the development of a new algorithm.
The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar years. In particular, despite material hardship and without a notable mathematical tradition, the school made major contributions to what is now called functional analysis. The results and names of Banach, Kac, Kuratowski, Mazur, Nikodym, Orlicz, Schauder, Sierpinski, Steinhaus, and Ulam, among others, now appear in all the standard textbooks. The vibrant joie de vivre and singular ambience of Lvov's once scintillating social scene are evocatively recaptured in personal recollections. The heyday of the famous Scottish Cafe - unquestionably the most mathematically productive cafeteria of all time - and its precious Scottish Book of highly influential problems are described in detail, revealing the special synergy of scholarship and camaraderie that permanently elevated Polish mathematics from utter obscurity to global prominence. This chronicle of the Lvov school - its legacy and the tumultuous historical events which defined its lifespan - will appeal equally to mathematicians, historians, or general readers seeking a cultural and institutional overview of key aspects of twentieth-century Polish mathematics not described anywhere else in the extant English-language literature.
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalisation, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin-shell conjecture and the Kannan-Lovasz-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.
A solutions manual to accompany Fundamentals of Calculus Fundamentals of Calculus illustrates the elements of finite calculus with the varied formulas for power, quotient, and product rules that correlate markedly with traditional calculus. Featuring calculus as the mathematics of change, each chapter concludes with a historical notes section. Fundamentals of Calculus chapter coverage includes: * Linear Equations and Functions * Integral Calculus * The Derivative * Integrations Techniques * Using the Derivative * Functions of Several Variables * Exponents and Logarithms * Series and Summations * Differentiation Techniques * Applications to Probability
An accessible, streamlined, and user-friendly approach to calculus Calculus is a beautiful subject that most of us learn from professors, textbooks, or supplementary texts. Each of these resources has strengths but also weaknesses. In Calculus Simplified, Oscar Fernandez combines the strengths and omits the weaknesses, resulting in a "Goldilocks approach" to learning calculus: just the right level of detail, the right depth of insights, and the flexibility to customize your calculus adventure. Fernandez begins by offering an intuitive introduction to the three key ideas in calculus-limits, derivatives, and integrals. The mathematical details of each of these pillars of calculus are then covered in subsequent chapters, which are organized into mini-lessons on topics found in a college-level calculus course. Each mini-lesson focuses first on developing the intuition behind calculus and then on conceptual and computational mastery. Nearly 200 solved examples and more than 300 exercises allow for ample opportunities to practice calculus. And additional resources-including video tutorials and interactive graphs-are available on the book's website. Calculus Simplified also gives you the option of personalizing your calculus journey. For example, you can learn all of calculus with zero knowledge of exponential, logarithmic, and trigonometric functions-these are discussed at the end of each mini-lesson. You can also opt for a more in-depth understanding of topics-chapter appendices provide additional insights and detail. Finally, an additional appendix explores more in-depth real-world applications of calculus. Learning calculus should be an exciting voyage, not a daunting task. Calculus Simplified gives you the freedom to choose your calculus experience, and the right support to help you conquer the subject with confidence. * An accessible, intuitive introduction to first-semester calculus * Nearly 200 solved problems and more than 300 exercises (all with answers) * No prior knowledge of exponential, logarithmic, or trigonometric functions required * Additional online resources-video tutorials and supplementary exercises-provided
Calculus Gems, a collection of essays written about mathematicians and mathematics, is a spin-off of two appendices (""Biographical Notes"" and ""Variety of Additional Topics"") found in Simmons' 1985 calculus book. With many additions and some minor adjustments, the material will now be available in a separate softcover volume. The text is suitable as a supplement for a calculus course and/or a history of mathematics course, The overall aim is bound up in the question, ""What is mathematics for?"" and in Simmons' answer, ""To delight the mind and help us understand the world"". The essays are independent of one another, allowing the instructor to pick and choose among them. Part A, ""Brief Lives"", is a biographical history of mathematics from earliest times (Thales, 625-547 BC) through the late 19th century (Weierstrass, 1815-1897) that serves to connect mathematics to the broader intellectual and social history of Western civilization. Part B, ""Memorable Mathematics"", is a collection of interesting topics from number theory, geometry, and science arranged in an order roughly corresponding to the order of most calculus courses. Some of these sections have a few problems for the student to solve. Students can gain perspective on the mathematical experience and learn some mathematics not contained in the usual courses, and instructors can assign student papers and projects based on the essays. The book teaches by example that mathematics is more than computation. Original illustrations of influential mathematicians in history and their inventions accompany the brief biographies and mathematical discussions.
Classical mechanics, one of the oldest branches of science, has
undergone a long evolution, developing hand in hand with many areas
of mathematics, including calculus, differential geometry, and the
theory of Lie groups and Lie algebras. The modern formulations of
Lagrangian and Hamiltonian mechanics, in the coordinate-free
language of differential geometry, are elegant and general. They
provide a unifying framework for many seemingly disparate physical
systems, such as n-particle systems, rigid bodies, fluids and other
continua, and electromagnetic and quantum systems.
Is there always a prime number between $n$ and $2n$? Where, approximately, is the millionth prime? And just what does calculus have to do with answering either of these questions? It turns out that calculus has a lot to do with both questions, as this book can show you. The theme of the book is approximations. Calculus is a powerful tool because it allows us to approximate complicated functions with simpler ones. Indeed, replacing a function locally with a linear - or higher order - approximation is at the heart of calculus. The real star of the book, though, is the task of approximating the number of primes up to a number $x$. This leads to the famous Prime Number Theorem - and to the answers to the two questions about primes. While emphasizing the role of approximations in calculus, most major topics are addressed, such as derivatives, integrals, the Fundamental Theorem of Calculus, sequences, series, and so on.However, our particular point of view also leads us to many unusual topics: curvature, Pade approximations, public key cryptography, and an analysis of the logistic equation, to name a few. The reader takes an active role in developing the material by solving problems. Most topics are broken down into a series of manageable problems, which guide you to an understanding of the important ideas. There is also ample exposition to fill in background material and to get you thinking appropriately about the concepts. ""Approximately Calculus"" is intended for the reader who has already had an introduction to calculus, but wants to engage the concepts and ideas at a deeper level. It is suitable as a text for an honors or alternative second semester calculus course.
This book, now in a second revised and enlarged edition, covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students and avoiding unnecessary mathematical jargon and proofs that are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and sufficiently convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. The second edition includes more on advanced algebra, polynomials and algebraic equations in significantly extended first two chapters on elementary mathematics, numerical and functional series and ordinary differential equations. Improvements have been made in all other chapters, with inclusion of additional material, to make the presentation clearer, more rigorous and coherent, and the number of problems has been increased at least twofold. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume the second edition of which the author is currently being working on.
This is the fifth edition of Lang's caclulus book. It covers all of the topics traditionally taught in the first-year calculus sequence. The book consists of five parts: Review of Basic Material, Differention and Elementary Functions, Integration, Taylor's Formula and Series and Functions of Several Variables. Each section of A FIRST COURSE IN CALCULUS contains examples and applications of the topic covered. In addition, the back of the book contains detailed solutions to a large number of the exercises. These can be used as worked-out examples, and constitute one of the main changes from previous editions.
This book contains the latest developments in a central theme of research on analysis of one complex variable. The material is based on lectures at the University of Michigan. The exposition is about understanding the geometry of interpolating and sampling sequences in classical spaces of analytic functions. The subject can be viewed as arising from three classical topics: Nevanlinna-Pick interpolation, Carleson's interpolation theorem for $H^\infty$, and the sampling theorem, also known as the Whittaker-Kotelnikov-Shannon theorem.The author clarifies how certain basic properties of the space at hand are reflected in the geometry of interpolating and sampling sequences. Key words for the geometric descriptions are Carleson measures, Beurling densities, the Nyquist rate, and the Helson-Szego condition. Seip writes in a relaxed and fairly informal style, successfully blending informal explanations with technical details. The result is a very readable account of this complex topic. Prerequisites are a basic knowledge of complex and functional analysis. Beyond that, readers should have some familiarity with the basics of $H^p$ theory and BMO.
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
This fourth volume of ""Research in Collegiate Mathematics Education"" (""RCME IV"") reflects the themes of student learning and calculus. Included are overviews of calculus reform in France and in the U.S. and large-scale and small-scale longitudinal comparisons of students enrolled in first-year reform courses and in traditional courses. The work continues with detailed studies relating students' understanding of calculus and associated topics. Direct focus is then placed on instruction and student comprehension of courses other than calculus, namely abstract algebra and number theory. The volume concludes with a study of a concept that overlaps the areas of focus, quantifiers. The book clearly reflects the trend towards a growing community of researchers who systematically gather and distill data regarding collegiate mathematics' teaching and learning.
This first-year calculus book is centered around the use of
infinitesimals, an approach largely neglected until recently for
reasons of mathematical rigor. It exposes students to the intuition
that originally led to the calculus, simplifying their grasp of the
central concepts of derivatives and integrals. The author also
teaches the traditional approach, giving students the benefits of
both methods.
Rigorous but accessible text introduces undergraduate-level students to necessary background math, then clear coverage of differential calculus, differentiation as a tool, integral calculus, integration as a tool, and functions of several variables. Numerous problems and a supplementary section of "Hints and Answers." 1977 edition.
Shortlisted for the Royal Society Science Book Prize 2019 A magisterial history of calculus (and the people behind it) from one of the world's foremost mathematicians. This is the captivating story of mathematics' greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death. Taking us on a thrilling journey through three millennia, professor Steven Strogatz charts the development of this seminal achievement from the days of Archimedes to today's breakthroughs in chaos theory and artificial intelligence. Filled with idiosyncratic characters from Pythagoras to Fourier, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilisation, including science, politics, medicine, philosophy, and much besides.
This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces - known as RCD spaces - satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of "infinitesimally Hilbertian" metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.
"The Calculus of Friendship" is the story of an extraordinary connection between a teacher and a student, as chronicled through more than thirty years of letters between them. What makes their relationship unique is that it is based almost entirely on a shared love of calculus. For them, calculus is more than a branch of mathematics; it is a game they love playing together, a constant when all else is in flux. The teacher goes from the prime of his career to retirement, competes in whitewater kayaking at the international level, and loses a son. The student matures from high school math whiz to Ivy League professor, suffers the sudden death of a parent, and blunders into a marriage destined to fail. Yet through it all they take refuge in the haven of calculus--until a day comes when calculus is no longer enough. Like calculus itself, "The Calculus of Friendship" is an exploration of change. It's about the transformation that takes place in a student's heart, as he and his teacher reverse roles, as they age, as they are buffeted by life itself. Written by a renowned teacher and communicator of mathematics, "The Calculus of Friendship" is warm, intimate, and deeply moving. The most inspiring ideas of calculus, differential equations, and chaos theory are explained through metaphors, images, and anecdotes in a way that all readers will find beautiful, and even poignant. Math enthusiasts, from high school students to professionals, will delight in the offbeat problems and lucid explanations in the letters. For anyone whose life has been changed by a mentor, "The Calculus of Friendship" will be an unforgettable journey. |
![]() ![]() You may like...
Modelling and Simulation in Fluid…
Jose a Ferreira, Silvia Barbeiro, …
Hardcover
R3,522
Discovery Miles 35 220
Oil and Gas Pipelines in the…
Sergey S. Zhiltsov, Igor S. Zonn, …
Hardcover
R9,103
Discovery Miles 91 030
Computational Methods in Earthquake…
Manolis Papadrakakis, Vagelis Plevris, …
Hardcover
Quality of Spatial Data in Command and…
Vaclav Talhofer, Sarka Hoskova-Mayerova, …
Hardcover
R2,879
Discovery Miles 28 790
ICIPEG 2014 - Proceedings of the…
Mariyamni Awang, Berihun Mamo Negash, …
Hardcover
Geomorphological Mapping, Volume 15…
Mike Smith, James Griffiths
Hardcover
|