![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
The author's goal for the book is that it's clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student's calculus experience. They paid special attention to certain aspects of the text: 1. Clear, accessible exposition that anticipates and addresses student difficulties. 2. Layout and figures that communicate the flow of ideas. 3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective. 4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gelfand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 1 is devoted to basics of the theory of generalized functions. The first chapter contains main definitions and most important properties of generalized functions as functional on the space of smooth functions with compact support. The second chapter talks about the Fourier transform of generalized functions. In Chapter 3, definitions and properties of some important classes of generalized functions are discussed; in particular, generalized functions supported on submanifolds of lower dimension, generalized functions associated with quadratic forms, and homogeneous generalized functions are studied in detail. Many simple basic examples make this book an excellent place for a novice to get acquainted with the theory of generalized functions. A long appendix presents basics of generalized functions of complex variables.
Fourier Analysis is an important area of mathematics, especially in light of its importance in physics, chemistry, and engineering. Yet it seems that this subject is rarely offered to undergraduates. This book introduces Fourier Analysis in its three most classical settings: The Discrete Fourier Transform for periodic sequences, Fourier Series for periodic functions, and the Fourier Transform for functions on the real line. The presentation is accessible for students with just three or four terms of calculus, but the book is also intended to be suitable for a junior-senior course, for a capstone undergraduate course, or for beginning graduate students. Material needed from real analysis is quoted without proof, and issues of Lebesgue measure theory are treated rather informally. Included are a number of applications of Fourier Series, and Fourier Analysis in higher dimensions is briefly sketched. A student may eventually want to move on to Fourier Analysis discussed in a more advanced way, either by way of more general orthogonal systems, or in the language of Banach spaces, or of locally compact commutative groups, but the experience of the classical setting provides a mental image of what is going on in an abstract setting.
The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar years. In particular, despite material hardship and without a notable mathematical tradition, the school made major contributions to what is now called functional analysis. The results and names of Banach, Kac, Kuratowski, Mazur, Nikodym, Orlicz, Schauder, Sierpinski, Steinhaus, and Ulam, among others, now appear in all the standard textbooks. The vibrant joie de vivre and singular ambience of Lvov's once scintillating social scene are evocatively recaptured in personal recollections. The heyday of the famous Scottish Cafe - unquestionably the most mathematically productive cafeteria of all time - and its precious Scottish Book of highly influential problems are described in detail, revealing the special synergy of scholarship and camaraderie that permanently elevated Polish mathematics from utter obscurity to global prominence. This chronicle of the Lvov school - its legacy and the tumultuous historical events which defined its lifespan - will appeal equally to mathematicians, historians, or general readers seeking a cultural and institutional overview of key aspects of twentieth-century Polish mathematics not described anywhere else in the extant English-language literature.
This text is designed for first courses in financial calculus aimed at students with a good background in mathematics. Key concepts such as martingales and change of measure are introduced in the discrete time framework, allowing an accessible account of Brownian motion and stochastic calculus. The Black-Scholes pricing formula is first derived in the simplest financial context. Subsequent chapters are devoted to increasing the financial sophistication of the models and instruments. The final chapter introduces more advanced topics including stock price models with jumps, and stochastic volatility. A large number of exercises and examples illustrate how the methods and concepts can be applied to realistic financial questions.
This second edition of a text for a course on calculus of functions of several variables begins with basics of matrices and vectors and a chapter recalling the important points of the theory in one dimension. It then introduces partial derivatives via functions of two variables and then extends the discussion to more than two variables. This pattern is repeated throughout the book, with two variables being used as a springboard for the more general case. The book distinguishes itself from the competition with its introduction of elementary difference equations, including the use of the difference operator, as well as differential equations and complex numbers. It overcomes the difficulty of visualizing curves and surfaces from equations with the use of many computer graphics in full color, and it contains more than 250 exercises. With applications to economics and an emphasis on practical problem-solving in the sciences rather than the proof of formal theorems, this text should provide excellent motivation to students.
2013 Reprint of 1949 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Francis Begnaud Hildebrand (1915-2002) was an American mathematician. He was a Professor of mathematics at the Massachusetts Institute of Technology (MIT) from 1940 until 1984. Hildebrand was known for his many influential textbooks in mathematics and numerical analysis. The big green textbook from these classes (originally "Advanced Calculus for Engineers," later "Advanced Calculus for Applications") was a fixture in engineers' offices for decades.
This book is for instructors who think that most calculus textbooks are too long. In writing the book, James Stewart asked himself: What is essential for a calculus course for scientists and engineers? ESSENTIAL CALCULUS, 2E, International Metric Edition offers a concise approach to teaching calculus that focuses on major concepts, and supports those concepts with precise definitions, patient explanations, and carefully graded problems. The book is only 900 pages-two-thirds the size of Stewart's other calculus texts, and yet it contains almost all of the same topics. The author achieved this relative brevity primarily by condensing the exposition and by putting some of the features on the book's website, www.StewartCalculus.com. Despite the more compact size, the book has a modern flavor, covering technology and incorporating material to promote conceptual understanding, though not as prominently as in Stewart's other books. ESSENTIAL CALCULUS, 2E, International Metric Edition features the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.
From the reviews: "The work is one of the real classics of this century; it has had much influence on teaching, on research in several branches of hard analysis, particularly complex function theory, and it has been an essential indispensable source book for those seriously interested in mathematical problems. These volumes contain many extraordinary problems and sequences of problems, mostly from some time past, well worth attention today and tomorrow. Written in the early twenties by two young mathematicians of outstanding talent, taste, breadth, perception, perseverence, and pedagogical skill, this work broke new ground in the teaching of mathematics and how to do mathematical research. (Bulletin of the American Mathematical Society)
Calculus Made Easy is the answer to anyone who has been baffled, frustrated and simply irritated by the traditional academic approach to applying differentiation and integration problems. First published over a century ago, the methods, "tricks of the trade" and shortcuts Silvanus Thompson reveals are as applicable today in solving real-world 21st century problems. Whether you are a student, an established professional, or simply curious, this easy-to-follow book will give you the confidence to attack even the most daunting problems in engineering, science or mathematics.
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
For students who need to polish their calculus skills for class or for a critical exam, this no-nonsense practical guide provides concise summaries, clear model examples, and plenty of practice, practice, practice. About the Book With more than 1,000,000 copies sold, Practice Makes Perfect has established itself as a reliable practical workbook series in the language-learning category. Now, with Practice Makes Perfect: Calculus, students will enjoy the same clear, concise approach and extensive exercises to key fields they've come to expect from the series--but now within mathematics. Practice Makes Perfect: Calculus is not focused on any particular test or exam, but complementary to most calculus curricula. Because of this approach, the book can be used by struggling students needing extra help, readers who need to firm up skills for an exam, or those who are returning to the subject years after they first studied it. Its all-encompassing approach will appeal to both U.S. and international students. Features More than 500 exercises and answers covering all aspects of calculus.Successful series: "Practice Makes Perfect" has sales of 1,000,000 copies in the language category--now applied to mathematics.Large trim allows clear presentation of worked problems, exercises, and explained answers.
This book is an introduction to basic topics in inequalities and their applications. These include the arithmetic mean-geometric mean inequality, Cauchy-Schwarz inequality, Chebyshev inequality, rearrangement inequality, convex and concave functions and Muirhead's theorem. More than 400 problems are included in the book and their solutions are explained. A chapter on geometric inequalities is a special feature of this book. Most of these problems are from International Mathematical Olympiads and from many national mathematical olympiads. The book is intended to help students who are preparing for various mathematical competitions. It is also a good source book for graduate students in consolidating their knowledge of inequalities and their applications. The author has been involved in training Indian students for mathematical olympiads for more than 25 years.
The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of κ -solutions including the κ -gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.
The Calculus Collection is a useful resource for everyone who teaches calculus, in secondary school or in a college or university. It consists of 123 articles selected by a panel of veteran secondary school teachers. The articles focus on engaging students who are meeting the core ideas of calculus for the first time and who are interested in a deeper understanding of single-variable calculus. The Calculus Collection is filled with insights, alternative explanations of difficult ideas, and suggestions for how to take a standard problem and open it up to the rich mathematical explorations available when you encourage students to dig a little deeper. Some of the articles reflect an enthusiasm for bringing calculators and computers into the classroom, while others consciously address themes from the calculus reform movement. But most of the articles are simply interesting and timeless explorations of the mathematics encountered in a first course in calculus.
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores Schaum's Outlines-Problem Solved.
Now regarded as the bane of many college students' existence,
calculus was one of the most important mathematical innovations of
the seventeenth century. But a dispute over its discovery sewed the
seeds of discontent between two of the greatest scientific giants
of all time -- Sir Isaac Newton and Gottfried Wilhelm Leibniz.
The ""infinite-dimensional groups"" in the title refer to unitary groups of Hilbert spaces, the infinite symmetric group, groups of homeomorphisms of manifolds, groups of transformations of measure spaces, etc. The book presents an approach to the study of such groups based on ideas from geometric functional analysis and from exploring the interplay between dynamical properties of those groups, combinatorial Ramsey-type theorems, and the phenomenon of concentration of measure. The dynamics of infinite-dimensional groups is very much unlike that of locally compact groups. For instance, every locally compact group acts freely on a suitable compact space (Veech). By contrast, a 1983 result by Gromov and Milman states that whenever the unitary group of a separable Hilbert space continuously acts on a compact space, it has a common fixed point. In the book, this new fast-growing theory is built strictly from well-understood examples up. The book has no close counterpart and is based on recent research articles. At the same time, it is organized so as to be reasonably self-contained. The topic is essentially interdisciplinary and will be of interest to mathematicians working in geometric functional analysis, topological and ergodic dynamics, Ramsey theory, logic and descriptive set theory, representation theory, topological groups, and operator algebras.
A course in analysis dealing essentially with functions of a real
variable, this text for upper-level undergraduate students
introduces the basic concepts in their simplest setting and
proceeds with numerous examples, theorems stated in a practical
manner, and coherently expressed proofs. 1955 edition.
This book, based on the course given by the author at the College of Mathematics of the Independent University of Moscow, introduces the reader to the language of generating functions, which is nowadays the main language of enumerative combinatorics. It starts with definitions, simple properties, and numerous examples of generating functions. It then discusses topics, such as formal grammars, generating functions in several variables, partitions and decompositions, and the exclusion-inclusion principle. In the final chapter, the author describes applications of generating functions to enumeration of trees, plane graphs, and graphs embedded in two-dimensional surfaces. Throughout the book, the reader is motivated by interesting examples rather than by general theories. It also contains a lot of exercises to help the reader master the material. Little beyond the standard calculus course is necessary to understand the book. It can serve as a text for a one-semester undergraduate course in combinatorics.
This is the last of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. This volume distinguishes itself from others of the same genre in getting the mathematics right. In trigonometry, this volume makes explicit the fact that the trigonometric functions cannot even be defined without the theory of similar triangles. It also provides details for extending the domain of definition of sine and cosine to all real numbers. It explains as well why radians should be used for angle measurements and gives a proof of the conversion formulas between degrees and radians. In calculus, this volume pares the technicalities concerning limits down to the essential minimum to make the proofs of basic facts about differentiation and integration both correct and accessible to school teachers and educators; the exposition may also benefit beginning math majors who are learning to write proofs. An added bonus is a correct proof that one can get a repeating decimal equal to a given fraction by the “long division” of the numerator by the denominator. This proof attends to all three things all at once: what an infinite decimal is, why it is equal to the fraction, and how long division enters the picture. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.
Functional analysis plays a crucial role in the applied sciences as well as in mathematics. It is a beautiful subject that can be motivated and studied for its own sake. In keeping with this basic philosophy, the author has made this introductory text accessible to a wide spectrum of students, including beginning-level graduates and advanced undergraduates. The exposition is inviting, following threads of ideas, describing each as fully as possible, before moving on to a new topic. Supporting material is introduced as appropriate, and only to the degree needed. Some topics are treated more than once, according to the different contexts in which they arise. The prerequisites are minimal, requiring little more than advanced calculus and no measure theory. The text focuses on normed vector spaces and their important examples, Banach spaces and Hilbert spaces.The author also includes topics not usually found in texts on the subject. This Second Edition incorporates many new developments while not overshadowing the book's original flavor. Areas in the book that demonstrate its unique character have been strengthened. In particular, new material concerning Fredholm and semi-Fredholm operators is introduced, requiring minimal effort as the necessary machinery was already in place. Several new topics are presented, but relate to only those concepts and methods emanating from other parts of the book. These topics include perturbation classes, measures of noncompactness, strictly singular operators, and operator constants. Overall, the presentation has been refined, clarified, and simplified, and many new problems have been added.
Changing the way students learn calculus at New Mexico State University. In the Spring of 1988, Marcus Cohen, Edward D. Gaughan, Arthur Knoebel, Douglas S. Kurtz, and David Penegelley began work on a student project approach to calculus. For the next two years, most of their waking hours (and some of their dreams) would be devoted to writing projects for their students and discovering how to make the use of projects in calculus classes not only successful, but practical as well. A grant from the National Science Foundation made it possible for this experiment to go forward on a large scale. The enthusiasm of the original group of five faculty was contagious, and soon other members of the department were also writing and using projects in their calculus classes. At the present time, about 80% of the calculus students at New Mexico State University are doing projects in their Calculus courses. Teachers can use their methods in teaching their own calculus courses. Student Research Projects in Calculus provides teachers with over 100 projects ready to assign to students in single and multivariable calculus. The authors have designed these projects with one goal in mind: to get students to think for themselves. Each project is a multistep, take-home problem, allowing students to work both individually and in groups. The projects resemble mini-research problems. Most of them require creative thought, and all of them engage the student's analytic and intuitive faculties. the projects often build from a specific example to the general case, and weave together ideas from many parts of the calculus. Project statements are clearly stated and contain a minimum of mathematical symbols. Students must draw their own diagrams, decide for themselves what the problem is about, and what toolsfrom the calculus they will use to solve it. This approach elicits from students an amazing level of sincere questioning, energetic research, dogged persistence, and conscientious communication. Each project has accompanying notes to the instructor, reporting students' experiences. The notes contain helpful information on prerequisites, list the main topics the project explores, and suggests helpful hints. The authors have also provided several introductory chapters to help instructors use projects successfully in their classes and begin to create their own.
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors describe permutation tests from the point of view of experimental design, avoiding cumbersome mathematical details, and illustrate the process of devising an appropriate permutation test through case studies. In addition to the text, we contribute two open source packages for permutation tests, permute in Python and permuter in R, which include a comprehensive code base to implement common permutation tests as well as the code to implement each of the book's case studies. This text may serve as an introduction to permutation tests for researchers, a handbook for researchers hoping to use the open source code, and a textbook in a graduate-level statistics or data science course. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes real case studies from both experimental and observational studies. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Graduates, practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book. |
You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R2,018
Discovery Miles 20 180
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R724
Discovery Miles 7 240
|