![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
"The true method of foreseeing the future of mathematics is to study its history and its actual state." With these words Henri Poincare began his presentation to the Fourth International Congress of Mathematicians at Rome in 1908. Although Poincare himself never actively pursued the history of mathematics, his remarks have given both historians of mathematics and working mathematicians a valuable methodological guideline, not so much for indulging in improbable prophecies about the future state of mathematics, as for finding in history the origins and moti va tions of contemporary theories, and for finding in the present the most fruitful statements of these theories. At the time Poincare spoke, at the beginning of this century, historical research in the various branches of rna thema tics was emerging with distinctive autonomy. In Germany the last volume of Cantor's monumental Vorlesungell iiber die Gesehiehte der Mathematik had just appeared, and many new specialized journals were appearing to complement those already in existence, from Enestrom's Bibliotheea mathematiea to Loria's Bollettino di bibliogra/ia e di storia delle seienze matematiehe. The annual Jahresberiehte of the German Mathematical Society included noteworthy papers of a historical nature, as did the Enzyklopadie der mathematisehen Wissenseha/ten, an imposing work constructed according to the plan of Felix Klein.
Comprehensive Reference Work on Multivariate Analysis and Its Applications The first edition of this book, by Mardia, Kent and Bibby, has been widely used globally for over 40 years. This second edition brings many topics up to date, with a special emphasis on recent developments. A wide range of material in multivariate analysis is covered, including the classical themes of multivariate normal theory, multivariate regression, inference, multidimensional scaling, factor analysis, cluster analysis and principal component analysis. The book also now covers modern developments such as graphical models, robust estimation, statistical learning, and high-dimensional methods. The book expertly blends theory and application, providing numerous worked examples and exercises at the end of each chapter. The reader is assumed to have a basic knowledge of mathematical statistics at an undergraduate level together with an elementary understanding of linear algebra. There are appendices which provide a background in matrix algebra, a summary of univariate statistics, a collection of statistical tables and a discussion of computational aspects. The work includes coverage of: Basic properties of random vectors, normal distribution theory, and estimation Hypothesis testing, multivariate regression, and analysis of variance Principal component analysis, factor analysis, and canonical correlation analysis Cluster analysis and multidimensional scaling New advances and techniques, including statistical learning, graphical models and regularization methods for high-dimensional data Although primarily designed as a textbook for final year undergraduates and postgraduate students in mathematics and statistics, the book will also be of interest to research workers and applied scientists.
The main objective of this book is to extend the scope of the q-calculus based on the definition of q-derivative [Jackson (1910)] to make it applicable to dense domains. As a matter of fact, Jackson's definition of q-derivative fails to work for impulse points while this situation does not arise for impulsive equations on q-time scales as the domains consist of isolated points covering the case of consecutive points. In precise terms, we study quantum calculus on finite intervals.In the first part, we discuss the concepts of qk-derivative and qk-integral, and establish their basic properties. As applications, we study initial and boundary value problems of impulsive qk-difference equations and inclusions equipped with different kinds of boundary conditions. We also transform some classical integral inequalities and develop some new integral inequalities for convex functions in the context of qk-calculus. In the second part, we develop fractional quantum calculus in relation to a new qk-shifting operator and establish some existence and qk uniqueness results for initial and boundary value problems of impulsive fractional qk-difference equations.
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, Introduction to Stochastic Calculus Applied to Finance, Second Edition incorporates some of these new techniques and concepts to provide an accessible, up-to-date initiation to the field. New to the Second Edition Complements on discrete models, including Rogers' approach to the fundamental theorem of asset pricing and super-replication in incomplete markets Discussions on local volatility, Dupire's formula, the change of numeraire techniques, forward measures, and the forward Libor model A new chapter on credit risk modeling An extension of the chapter on simulation with numerical experiments that illustrate variance reduction techniques and hedging strategies Additional exercises and problems Providing all of the necessary stochastic calculus theory, the authors cover many key finance topics, including martingales, arbitrage, option pricing, American and European options, the Black-Scholes model, optimal hedging, and the computer simulation of financial models. They succeed in producing a solid introduction to stochastic approaches used in the financial world.
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
This volume presents several important and recent contributions to the emerging field of fractional differential equations in a self-contained manner. It deals with new results on existence, uniqueness and multiplicity, smoothness, asymptotic development, and stability of solutions. The new topics in the field of fractional calculus include also the Mittag-Leffler and Razumikhin stability, stability of a class of discrete fractional non-autonomous systems, asymptotic integration with a priori given coefficients, intervals of disconjugacy (non-oscillation), existence of Lp solutions for various linear, and nonlinear fractional differential equations.
Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Get ahead in pre-calculus Pre-calculus courses have become increasingly popular with 35 percent of students in the U.S. taking the course in middle or high school. Often, completion of such a course is a prerequisite for calculus and other upper level mathematics courses. Pre-Calculus For Dummies is an invaluable resource for students enrolled in pre-calculus courses. By presenting the essential topics in a clear and concise manner, the book helps students improve their understanding of pre-calculus and become prepared for upper level math courses. Provides fundamental information in an approachable manner Includes fresh example problems Practical explanations mirror today's teaching methods Offers relevant cultural references Whether used as a classroom aid or as a refresher in preparation for an introductory calculus course, this book is one you'll want to have on hand to perform your very best.
A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space.This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint operators and an extension to normal operators. The Riesz operational calculus based on the Cauchy integral theorem from complex analysis is also described. Finally, an exposition of a functional calculus due to H. Weyl is given.
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.
This compact yet thorough text zeros in on the parts of the theory that are particularly relevant to applications . It begins with a description of Brownian motion and the associated stochastic calculus, including their relationship to partial differential equations. It solves stochastic differential equations by a variety of methods and studies in detail the one-dimensional case. The book concludes with a treatment of semigroups and generators, applying the theory of Harris chains to diffusions, and presenting a quick course in weak convergence of Markov chains to diffusions.
This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science.Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web. Examples are put forward in Mathematica throughout the book, together with packages for performing symbolic computations.
This is a book on many variable calculus. It is the second volume of a set of two. It includes proofs of all theorems presented, either in the text itself, or in an appendix. It also includes a sufficient introduction to linear algebra to allow the accurate presentation of many variable calculus. The use of elementary linear algebra in presenting the topics of multi- variable calculus is more extensive than usual in this book. It makes many of these topics easier to understand and remember. The book will prepare readers for more advanced math courses and also for courses in physical science.
This is a book on many variable calculus. It is the second volume of a set of two. It includes proofs of all theorems presented, either in the text itself, or in an appendix. It also includes a sufficient introduction to linear algebra to allow the accurate presentation of many variable calculus. The use of elementary linear algebra in presenting the topics of multi- variable calculus is more extensive than usual in this book. It makes many of these topics easier to understand and remember. The book will prepare readers for more advanced math courses and also for courses in physical science.
This is a book on single variable calculus including most of the important applications of calculus. It also includes proofs of all theorems presented, either in the text itself, or in an appendix. It also contains an introduction to vectors and vector products which is developed further in Volume 2. While the book does include all the proofs of the theorems, many of the applications are presented more simply and less formally than is often the case in similar titles.
This is a book on single variable calculus including most of the important applications of calculus. It also includes proofs of all theorems presented, either in the text itself, or in an appendix. It also contains an introduction to vectors and vector products which is developed further in Volume 2. While the book does include all the proofs of the theorems, many of the applications are presented more simply and less formally than is often the case in similar titles.
How do we measure happiness? Focusing on subjective measures as a proxy for welfare and well-being, this book finds ways to do that. Subjective measures have been used by psychologists, sociologists, political scientists, and, more recently, economists to answer a variety of scientifically and politically relevant questions. Van Praag, a pioneer in this field since 1971, and Ferrer-i-Carbonell present in this book a generally applicable methodology for the analysis of subjective satisfaction. Drawing on a range of surveys on people's satisfaction with their jobs, income, housing, marriages, and government policy, among other areas of life, this book shows how satisfaction with life "as a whole" is an aggregate of these domain satisfactions. Using German, British, Dutch, and Russian data, the authors cover a wide range of topics, even some not usually considered part of economic study. The book makes a distinction between actual satisfaction levels and individual norms, and in this way complements Van Praag's earlier work within the Leyden School with his later work in "happiness research". Among the many topics covered, the authors discuss: individuals' memory and anticipation processes and the estimation of adaptation phenomena (how individuals adapt to changing circumstances); the effect of reference groups on income norms and satisfaction with income; the importance of climate for well-being, including the development of a climate-equivalence index; the trade-offs between chronic diseases and income when well-being is kept constant; the damage of aircraft noise on well-being; the construction of a new talent tax tariff; and inequality from a satisfaction perspective, including the definition of "satisfaction inequalities", a natural extension of income inequality and poverty. This groundbreaking book presents new and fruitful methodology that consitutes a welcome addition to the social sciences. |
You may like...
Self-powered SoC Platform for Analysis…
Hani Saleh, Nourhan Bayasi, …
Hardcover
R2,653
Discovery Miles 26 530
Think, Learn, Succeed - Understanding…
Dr. Caroline Leaf, Peter Amua-Quarshie, …
Paperback
(1)
Managing Uncertainty in Expert Systems
Jerzy W.Grzymala- Busse
Hardcover
R2,781
Discovery Miles 27 810
|