![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
Certain constants occupy precise balancing points in the cosmos of number, like habitable planets sprinkled throughout our galaxy at just the right distances from their suns. This book introduces and connects four of these constants (phi, pi, e and i), each of which has recently been the individual subject of historical and mathematical expositions. But here we discuss their properties, as a group, at a level appropriate for an audience armed only with the tools of elementary calculus. This material offers an excellent excuse to display the power of calculus to reveal elegant truths that are not often seen in college classes. These truths are described here via the work of such luminaries as Nilakantha, Liu Hui, Hemachandra, Khayyam, Newton, Wallis, and Euler.
Suitable for graduate students and professional researchers in operator theory and/or analysis Numerous applications in related scientific fields and areas.
This book is a compilation of all basic topics on functions of Several Variables and is primarily meant for undergraduate and post graduate students. Topics covered are: Limits, continuities and differentiabilities of functions of several variables. Properties of Implicit functions and Jacobians. Extreme values of multivariate functions. Various types of integrals in planes and surfaces and their related theorems including Dirichlet and Liouville's extension to Dirichlet. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan)
The most useful tool for reviewing mathematical methods for economics classes-now with more content Schaum's Outline of Calculus for Business, Economics and Finance, Fourth Edition is the go-to study guide for help in economics courses, mirroring the courses in scope and sequence to help you understand basic concepts and get extra practice in topics like multivariable functions, exponential and logarithmic functions, and more. With an outline format that facilitates quick and easy review, Schaum's Outline of Calculus for Business, Economics and Finance, Fourth Edition supports the major bestselling textbooks in economics courses and is useful for a variety of classes, including Introduction to Economics, Economics, Econometrics, Microeconomics, Macroeconomics, Economics Theories, Mathematical Economics, Math for Economists and Math for Social Sciences. Chapters include Economic Applications of Graphs and Equations, The Derivative and the Rules of Differentiation, Calculus of Multivariable Functions, Exponential and Logarithmic Functions in Economics, Special Determinants and Matrices and Their Use in Economics, First-Order Differential Equations, and more. Features: NEW in this edition: Additional problems at the end of each chapter NEW in this edition: An additional chapter on sequences and series NEW in this edition: Two computer applications of Linear Programming in Excel 710 fully solved problems Outline format to provide a concise guide for study for standard college courses in mathematical economics Clear, concise explanations covers all course fundamentals Supplements the major bestselling textbooks in economics courses Appropriate for the following courses: Introduction to Economics, Economics, Econometrics, Microeconomics, Macroeconomics, Economics Theories, Mathematical Economics, Math for Economists, Math for Social Sciences
This monograph (in two volumes) deals with non scalar variational problems arising in geometry, as harmonic mappings between Riemannian manifolds and minimal graphs, and in physics, as stable equilibrium configuations in nonlinear elasticity or for liquid crystals. The presentation is selfcontained and accessible to non specialists. Topics are treated as far as possible in an elementary way, illustrating results with simple examples; in principle, chapters and even sections are readable independently of the general context, so that parts can be easily used for graduate courses. Open questions are often mentioned and the final section of each chapter discusses references to the literature and sometimes supplementary results. Finally, a detailed Table of Contents and an extensive Index are of help to consult this monograph
Every financial professional wants and needs an advantage. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the advantage these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books presents the advanced mathematics finance professionals need to advance their careers. These books develop the theory most do not learn in Graduate Finance programs, or in most Financial Mathematics undergraduate and graduate courses. As a high-level industry executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial industry and two decades in education where he taught in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the first books in the set. The set offers a linear progression through these topics, though each title can be studied independently since the collection is extensively self-referenced. Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes, develops several approaches to an integration theory. The first two approaches were introduced in the Chapter 1 of Book I to motivate measure theory. The general theory of integration on measure spaces will be developed in Book V, and stochastic integrals then studies on Book VIII. Book III Features: Extensively referenced to utilize materials from earlier books. Presents the theory needed to better understand applications. Supplements previous training in mathematics, with more detailed developments. Built from the author's five decades of experience in industry, research, and teaching. Published and forthcoming titles in the Robert Reitano Quantitative Finance Series: Book I: Measure Spaces and Measurable Functions. Book II: Probability Spaces and Random Variables, Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes Book IV: Distribution Functions and Expectations Book V: General Measure and Integration Theory Book VI: Densities, Transformed Distributions, and Limit Theorems Book VII: Brownian Motion and Other Stochastic Processes Book VIII: Itô Integration and Stochastic Calculus 1 Book IX: Stochastic Calculus 2 and Stochastic Differential Equations Book 10: Applications and Classic Models
Get ahead in pre-calculus Pre-calculus courses have become increasingly popular with 35 percent of students in the U.S. taking the course in middle or high school. Often, completion of such a course is a prerequisite for calculus and other upper level mathematics courses. Pre-Calculus For Dummies is an invaluable resource for students enrolled in pre-calculus courses. By presenting the essential topics in a clear and concise manner, the book helps students improve their understanding of pre-calculus and become prepared for upper level math courses. Provides fundamental information in an approachable manner Includes fresh example problems Practical explanations mirror today's teaching methods Offers relevant cultural references Whether used as a classroom aid or as a refresher in preparation for an introductory calculus course, this book is one you'll want to have on hand to perform your very best.
This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21-25, 2018, at Laval University, Quebec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
Calculus of variations has a long history. Its fundamentals were laid down by icons of mathematics like Euler and Lagrange. It was once heralded as the panacea for all engineering optimization problems by suggesting that all one needed to do was to state a variational problem, apply the appropriate Euler-Lagrange equation and solve the resulting differential equation. This, as most all encompassing solutions, turned out to be not always true and the resulting differential equations are not necessarily easy to solve. On the other hand, many of the differential equations commonly used in various fields of engineering are derived from a variational problem. Hence it is an extremely important topic justifying the new edition of this book. This third edition extends the focus of the book to academia and supports both variational calculus and mathematical modeling classes. The newly added sections, extended explanations, numerous examples and exercises aid the students in learning, the professors in teaching, and the engineers in applying variational concepts.
G.H. Hardy's text is a good single volume refresher course for work in analysis and more advanced algebra, including number theory. Not quite as modern as Birkhoff and MacLane's text, or Manes' work, this volume forms the underpinnings of both works. If you have a good understanding of the preliminary work required in algebra and geometry, Hardy can be read directly and with pleasure. If you have a desire to understand the basis of what is presented in most first-year calculus texts, then Hardy's text is for you.
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test.
We consider the problem of minimizing the relative perimeter under a volume constraint in an unbounded convex body C ? Rn, without assuming any further regularity on the boundary of C. Motivated by an example of an unbounded convex body with null isoperimetric profile, we introduce the concept of unbounded convex body with uniform geometry. We then provide a handy characterization of the uniform geometry property and, by exploiting the notion of asymptotic cylinder of C, we prove existence of isoperimetric regions in a generalized sense. By an approximation argument we show the strict concavity of the isoperimetric profile and, consequently, the connectedness of generalized isoperimetric regions. We also focus on the cases of small as well as of large volumes; in particular we show existence of isoperimetric regions with sufficiently large volumes, for special classes of unbounded convex bodies. We finally address some questions about isoperimetric rigidity and analyze the asymptotic behavior of the isoperimetric profile in connection with the notion of isoperimetric dimension.
This book focuses on fractional calculus, presenting novel advances in both the theory and applications of non-integer order systems. At the end of the twentieth century it was predicted that it would be the calculus of the twenty-first century, and that prophecy is confirmed year after year. Now this mathematical tool is successfully used in a variety of research areas, like engineering (e.g. electrical, mechanical, chemical), dynamical systems modeling, analysis and synthesis (e.g technical, biological, economical) as well as in multidisciplinary areas (e.g. biochemistry, electrochemistry).As well as the mathematical foundations the book concentrates on the technical applications of continuous-time and discrete-time fractional calculus, investigating the identification, analysis and control of electrical circuits and dynamical systems. It also presents the latest results.Although some scientific centers and scientists are skeptical and actively criticize the applicability of fractional calculus, it is worth breaking through the scientific and technological walls. Because the "fractional community" is growing rapidly there is a pressing need for the exchange of scientific results. The book includes papers presented at the 9th International Conference on Non-integer Order Calculus and Its Applications and is divided into three parts:* Mathematical foundations* Fractional systems analysis and synthesis* System modelingSeven papers discuss the mathematical foundations, twelve papers address fractional order analysis and synthesis and three focus on dynamical system modeling by the fractional order differential and difference equations. It is a useful resource for fractional calculus scientific community.
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.
"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.
This contributed volume discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-convex sub-superlinear Schroedinger equation, Schroedinger equations in nonlinear optics, exponentially convex functions, optimal lot size under the occurrence of imperfect quality items, generalized equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium points in the restricted three-body problem, optimization models for networks of organ transplants, network curvature measures, error analysis through energy minimization and stability problems, Ekeland variational principles in 2-local Branciari metric spaces, frictional dynamic problems, norm estimates for composite operators, operator factorization and solution of second-order nonlinear difference equations, degenerate Kirchhoff-type inclusion problems, and more.
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory. |
You may like...
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R717
Discovery Miles 7 170
|