![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
Suitable for graduate students and professional researchers in operator theory and/or analysis Numerous applications in related scientific fields and areas.
Every financial professional wants and needs an advantage. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the advantage these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books presents the advanced mathematics finance professionals need to advance their careers. These books develop the theory most do not learn in Graduate Finance programs, or in most Financial Mathematics undergraduate and graduate courses. As a high-level industry executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial industry and two decades in education where he taught in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the first books in the set. The set offers a linear progression through these topics, though each title can be studied independently since the collection is extensively self-referenced. Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes, develops several approaches to an integration theory. The first two approaches were introduced in the Chapter 1 of Book I to motivate measure theory. The general theory of integration on measure spaces will be developed in Book V, and stochastic integrals then studies on Book VIII. Book III Features: Extensively referenced to utilize materials from earlier books. Presents the theory needed to better understand applications. Supplements previous training in mathematics, with more detailed developments. Built from the author's five decades of experience in industry, research, and teaching. Published and forthcoming titles in the Robert Reitano Quantitative Finance Series: Book I: Measure Spaces and Measurable Functions. Book II: Probability Spaces and Random Variables, Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes Book IV: Distribution Functions and Expectations Book V: General Measure and Integration Theory Book VI: Densities, Transformed Distributions, and Limit Theorems Book VII: Brownian Motion and Other Stochastic Processes Book VIII: Itô Integration and Stochastic Calculus 1 Book IX: Stochastic Calculus 2 and Stochastic Differential Equations Book 10: Applications and Classic Models
Every financial professional wants and needs an advantage. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the advantage these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books presents the advanced mathematics finance professionals need to advance their careers. These books develop the theory most do not learn in Graduate Finance programs, or in most Financial Mathematics undergraduate and graduate courses. As a high-level industry executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial industry and two decades in education where he taught in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the first books in the set. The set offers a linear progression through these topics, though each title can be studied independently since the collection is extensively self-referenced. Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes, develops several approaches to an integration theory. The first two approaches were introduced in the Chapter 1 of Book I to motivate measure theory. The general theory of integration on measure spaces will be developed in Book V, and stochastic integrals then studies on Book VIII. Book III Features: Extensively referenced to utilize materials from earlier books. Presents the theory needed to better understand applications. Supplements previous training in mathematics, with more detailed developments. Built from the author's five decades of experience in industry, research, and teaching. Published and forthcoming titles in the Robert Reitano Quantitative Finance Series: Book I: Measure Spaces and Measurable Functions. Book II: Probability Spaces and Random Variables, Book III: The Integrals of Lebesgue and (Riemann-) Stieltjes Book IV: Distribution Functions and Expectations Book V: General Measure and Integration Theory Book VI: Densities, Transformed Distributions, and Limit Theorems Book VII: Brownian Motion and Other Stochastic Processes Book VIII: Itô Integration and Stochastic Calculus 1 Book IX: Stochastic Calculus 2 and Stochastic Differential Equations Book 10: Applications and Classic Models
G.H. Hardy's text is a good single volume refresher course for work in analysis and more advanced algebra, including number theory. Not quite as modern as Birkhoff and MacLane's text, or Manes' work, this volume forms the underpinnings of both works. If you have a good understanding of the preliminary work required in algebra and geometry, Hardy can be read directly and with pleasure. If you have a desire to understand the basis of what is presented in most first-year calculus texts, then Hardy's text is for you.
Sir Horace Lamb (1849 1934) the British mathematician, wrote a number of influential works in classical physics. A pupil of Stokes and Clerk Maxwell, he taught for ten years as the first professor of mathematics at the University of Adelaide before returning to Britain to take up the post of professor of physics at the Victoria University of Manchester (where he had first studied mathematics at Owens College). As a teacher and writer his stated aim was clarity: 'somehow to make these dry bones live'. The first edition of this work was published in 1897, the third revised edition in 1919, and a further corrected version just before his death. This edition, reissued here, remained in print until the 1950s. As with Lamb's other textbooks, each section is followed by examples.
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test.
This book focuses on fractional calculus, presenting novel advances in both the theory and applications of non-integer order systems. At the end of the twentieth century it was predicted that it would be the calculus of the twenty-first century, and that prophecy is confirmed year after year. Now this mathematical tool is successfully used in a variety of research areas, like engineering (e.g. electrical, mechanical, chemical), dynamical systems modeling, analysis and synthesis (e.g technical, biological, economical) as well as in multidisciplinary areas (e.g. biochemistry, electrochemistry).As well as the mathematical foundations the book concentrates on the technical applications of continuous-time and discrete-time fractional calculus, investigating the identification, analysis and control of electrical circuits and dynamical systems. It also presents the latest results.Although some scientific centers and scientists are skeptical and actively criticize the applicability of fractional calculus, it is worth breaking through the scientific and technological walls. Because the "fractional community" is growing rapidly there is a pressing need for the exchange of scientific results. The book includes papers presented at the 9th International Conference on Non-integer Order Calculus and Its Applications and is divided into three parts:* Mathematical foundations* Fractional systems analysis and synthesis* System modelingSeven papers discuss the mathematical foundations, twelve papers address fractional order analysis and synthesis and three focus on dynamical system modeling by the fractional order differential and difference equations. It is a useful resource for fractional calculus scientific community.
"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.
Calculus of variations has a long history. Its fundamentals were laid down by icons of mathematics like Euler and Lagrange. It was once heralded as the panacea for all engineering optimization problems by suggesting that all one needed to do was to state a variational problem, apply the appropriate Euler-Lagrange equation and solve the resulting differential equation. This, as most all encompassing solutions, turned out to be not always true and the resulting differential equations are not necessarily easy to solve. On the other hand, many of the differential equations commonly used in various fields of engineering are derived from a variational problem. Hence it is an extremely important topic justifying the new edition of this book. This third edition extends the focus of the book to academia and supports both variational calculus and mathematical modeling classes. The newly added sections, extended explanations, numerous examples and exercises aid the students in learning, the professors in teaching, and the engineers in applying variational concepts.
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
This contributed volume discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-convex sub-superlinear Schroedinger equation, Schroedinger equations in nonlinear optics, exponentially convex functions, optimal lot size under the occurrence of imperfect quality items, generalized equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium points in the restricted three-body problem, optimization models for networks of organ transplants, network curvature measures, error analysis through energy minimization and stability problems, Ekeland variational principles in 2-local Branciari metric spaces, frictional dynamic problems, norm estimates for composite operators, operator factorization and solution of second-order nonlinear difference equations, degenerate Kirchhoff-type inclusion problems, and more.
It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.
Discover an accessible and easy-to-use guide to calculus fundamentals In Quick Calculus: A Self-Teaching Guide, 3rd Edition, a team of expert MIT educators delivers a hands-on and practical handbook to essential calculus concepts and terms. The author explores calculus techniques and applications, showing readers how to immediately implement the concepts discussed within to help solve real-world problems. In the book, readers will find: An accessible introduction to the basics of differential and integral calculus An interactive self-teaching guide that offers frequent questions and practice problems with solutions. A format that enables them to monitor their progress and gauge their knowledge This latest edition provides new sections, rewritten introductions, and worked examples that demonstrate how to apply calculus concepts to problems in physics, health sciences, engineering, statistics, and other core sciences. Quick Calculus: A Self-Teaching Guide, 3rd Edition is an invaluable resource for students and lifelong learners hoping to strengthen their foundations in calculus.
Introduces analysis, presenting analytical proofs backed by geometric intuition and placing minimum reliance on geometric argument. This edition separates continuity and differentiation and expands coverage of integration to include discontinuous functions. The discussion of differentiation of a vector function of a vector variable has been modernized by defining the derivative to be the Jacobian matrix; and, the general form of the chain rule is given, as is the general form of the implicit transformation theorem.
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.
The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Calculus For Dummies, 2nd Edition (9781119293491) was previously published as Calculus For Dummies, 2nd Edition (9781118791295). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Slay the calculus monster with this user-friendly guide Calculus For Dummies, 2nd Edition makes calculus manageable even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be. Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win. * Includes foundations in algebra, trigonometry, and pre-calculus concepts * Explores sequences, series, and graphing common functions * Instructs you how to approximate area with integration * Features things to remember, things to forget, and things you can't get away with Stop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.
Basic Insights in Vector Calculus provides an introduction to three famous theorems of vector calculus, Green's theorem, Stokes' theorem and the divergence theorem (also known as Gauss's theorem). Material is presented so that results emerge in a natural way. As in classical physics, we begin with descriptions of flows.The book will be helpful for undergraduates in Science, Technology, Engineering and Mathematics, in programs that require vector calculus. At the same time, it also provides some of the mathematical background essential for more advanced contexts which include, for instance, the physics and engineering of continuous media and fields, axiomatically rigorous vector analysis, and the mathematical theory of differential forms.There is a Supplement on mathematical understanding. The approach invites one to advert to one's own experience in mathematics and, that way, identify elements of understanding that emerge in all levels of learning and teaching.Prerequisites are competence in single-variable calculus. Some familiarity with partial derivatives and the multi-variable chain rule would be helpful. But for the convenience of the reader we review essentials of single- and multi-variable calculus needed for the three main theorems of vector calculus.Carefully developed Problems and Exercises are included, for many of which guidance or hints are provided.
|
You may like...
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
(1)
News Search, Blogs and Feeds - A Toolkit
Lars Vage, Lars Iselid
Paperback
R1,332
Discovery Miles 13 320
|