![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level.  The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained and works in tandem with the other two, containing five hundred carefully selected problems and solutions. It can also be considered as an introduction to advanced set theory and descriptive set theory, presenting diverse topics of the theory of function spaces with the topology of point wise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology.
This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research.
Descriptive topology and functional analysis, with extensive material demonstrating new connections between them, are the subject of the first section of this work. Applications to spaces of continuous functions, topological Abelian groups, linear topological equivalence and to the separable quotient problem are included and are presented as open problems. The second section is devoted to Banach spaces, Banach algebras and operator theory. Each chapter presents a lot of worthwhile and important recent theorems with an abstract discussing the material in the chapter. Each chapter can almost be seen as a survey covering a particular area.
The book is a comprehensive yet compressed entry-level introduction on single variable calculus, focusing on the concepts and applications of limits, continuity, derivative, defi nite integral, series, sequences and approximations. Chapters are arranged to outline the essence of each topic and to address learning diffi culties, making it suitable for students and lecturers in mathematics, physics and engineering. Contents Prerequisites for calculus Limits and continuity The derivative Applications of the derivative The definite integral Techniques for integration and improper integrals Applications of the definite integral Infinite series, sequences, and approximations
The work consists of two introductory courses, developing different points of view on the study of the asymptotic behaviour of the geodesic flow, namely: the probabilistic approach via martingales and mixing (by Stéphane Le Borgne); the semi-classical approach, by operator theory and resonances (by Frédéric Faure and Masato Tsujii). The contributions aim to give a self-contained introduction to the ideas behind the three different approaches to the investigation of hyperbolic dynamics. The first contribution focus on the convergence towards a Gaussian law of suitably normalized ergodic sums (Central Limit Theorem). The second one deals with Transfer Operators and the structure of their spectrum (Ruelle-Pollicott resonances), explaining the relation with the asymptotics of time correlation function and the periodic orbits of the dynamics.
Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
This volume is a result of two international workshops, namely the Second Annual Workshop on Inverse Problems and the Workshop on Large-Scale Modeling, held jointly in Sunne, Sweden from May 1-6 2012. The subject of the inverse problems workshop was to present new analytical developments and new numerical methods for solutions of inverse problems. The objective of the large-scale modeling workshop was to identify large-scale problems arising in various fields of science and technology and covering all possible applications, with a particular focus on urgent problems in theoretical and applied electromagnetics. The workshops brought together scholars, professionals, mathematicians, and programmers and specialists working in large-scale modeling problems.  The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the “Age of reason†and next the “Birth of the modern worldâ€. The emphasis is rightly placed on the original contributions from the “Continental†scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: “Continuum Mechanics through the Twentieth Centuryâ€, Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
 From the Preface: “There are three volumes. The first one contains a curriculum vitae, a «Brève Analyse des Travaux» and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposés 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg... Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation.â€
This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently proposed signal processing tools and methods for addressing biological signals is included. The target audience primarily comprises researchers and expert practitioners but the book may also be beneficial for graduate students.
This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia that promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists who will help them to solve similar problems and offers modeling and simulation techniques that will provide mathematicians with a source of fresh ideas and inspiration.
Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in "light" calculus - mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management information systems. The first chapter contains a historical background of calculus. Every scientific achievement involves people and therefore characterized by victories and disappointments, intrigues and hope. All of these elements exist in the story behind calculus and when you add the time dimension, starting 2400 years ago, it is a saga. We hope the reader enjoys reading this chapter as much as we enjoyed the writing. In addition to classic calculus the book provides tools for practical applications such as Fourier series, Lagrange multipliers and elementary numerical methods.
The nineteenth century saw the paradoxes and obscurities of eighteenth-century calculus gradually replaced by the exact theorems and statements of rigorous analysis. It became clear that all analysis could be deduced from the properties of the real numbers. But what are the real numbers and why do they have the properties we claim they do? In this charming and influential book, Richard Dedekind (1831-1916), Professor at the Technische Hochschule in Braunschweig, showed how to resolve this problem starting from elementary ideas. His method of constructing the reals from the rationals (the Dedekind cut) remains central to this day and was generalised by Conway in his construction of the 'surreal numbers'. This reissue of Dedekind's 1888 classic is of the 'second, unaltered' 1893 edition.
The author's goal for the book is that it's clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student's calculus experience. They paid special attention to certain aspects of the text: 1. Clear, accessible exposition that anticipates and addresses student difficulties. 2. Layout and figures that communicate the flow of ideas. 3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective. 4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.
This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler-Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler-Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm-Liouville problems. Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.
Developing algorithms for multi-dimensional Fourier transforms, this book presents results that yield highly efficient code on a variety of vector and parallel computers. By emphasising the unified basis for the many approaches to both one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimising implementations. It will thus be of great interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
In September 1998, during the 'International Workshop on Analysis and Vibrat ing Systems' held in Canmore, Alberta, Canada, it was decided by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series 'Operator Theory: Advances and Applications'. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now presented to the reader. Regarding accep tance of papers we followed the usual rules of the journal 'Integral Equations and Operator Theory'. The papers are dedicated to different problems in matrix and operator theory, especially to the areas in which Peter contributed so richly. At our request, Peter agreed to write an autobiographical paper, which appears at the beginning of the volume. It continues with the list of Peter's publications. We believe that this volume will pay tribute to Peter on his outstanding achievements in different areas of mathematics. 1. Gohberg, H. Langer P ter Lancast r *1929 Operator Theory: Advances and Applications, Vol. 130, 1- 7 (c) 2001 Birkhiiuser Verlag Basel/Switzerland My Life and Mathematics Peter Lancaster I was born in Appleby, a small county town in the north of England, on November 14th, 1929. I had two older brothers and was to have one younger sister. My family moved around the north of England as my father's work in an insurance company required."
This volume contains the proceedings of "PDE 2000", the international conference on partial differential equations held July 24 -28, 2000, in Clausthal. The confer- ence took place during the EXPO 2000 and was sponsored by the Land Nieder- sachsen, the Deutsche Forschungsgemeinschaft, the Bergstadt Clausthal-Zellerfeld and the Kreissparkasse Clausthal-Zellerfeld. This conference continues a series: Ludwigfelde 1976, Reinhardsbrunn 1985, Holz- hau 1988, Breitenbrunn 1990, Lambrecht 1991 (proceedings in Operator Theory: Advances and Applications, Vol. 57, Birkhauser Verlag 1992), Potsdam 1992 and 1993, Holzhau 1994 (proceedings in Operator Theory: Advances and Applications, Vol. 78, Birkhauser Verlag 1995), Caputh 1995 and Potsdam 1996 (proceedings in Mathematical Research, Vol. 100, Akademie Verlag 1997). The intention of the organizers was to bring together specialists from different areas of modern analysis, mathematical physics and geometry, to discuss not only the recent progress in their own fields but also the interaction between these fields. The special topics of the conference were spectral and scattering theory, semiclas- sical and asymptotic analysis, pseudodifferential operators and their relation to geometry, as well as partial differential operators and their connection to stochas- tic analysis and to the theory of semigroups. The scientific advisory board of the conference in Clausthal consisted of M. Ben- Artzi (Jerusalem), Chen Hua (Peking), M. Demuth (Clausthal), T. Ichinose (Kanazawa), 1. Rodino (Thrin), B.-W. Schulze (Potsdam) and J. Sjostrand (Paris).
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations. |
You may like...
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R717
Discovery Miles 7 170
Excel in Complex Variables with the…
Bryce Wilkins, Theodore Hromadka II
Hardcover
R3,245
Discovery Miles 32 450
|