![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.
Covers multivariable calculus, starting from the basics and leading up to the three theorems of Green, Gauss, and Stokes, but always with an eye on practical applications. Written for a wide spectrum of undergraduate students by an experienced author, this book provides a very practical approach to advanced calculus--starting from the basics and leading up to the theorems of Green, Gauss, and Stokes. It explains, clearly and concisely, partial differentiation, multiple integration, vectors and vector calculus, and provides end-of-chapter exercises along with their solutions to aid the readers' understanding. Written in an approachable style and filled with numerous illustrative examples throughout, Two and Three Dimensional Calculus: with Applications in Science and Engineering assumes no prior knowledge of partial differentiation or vectors and explains difficult concepts with easy to follow examples. Rather than concentrating on mathematical structures, the book describes the development of techniques through their use in science and engineering so that students acquire skills that enable them to be used in a wide variety of practical situations. It also has enough rigor to enable those who wish to investigate the more mathematical generalizations found in most mathematics degrees to do so. Assumes no prior knowledge of partial differentiation, multiple integration or vectors Includes easy-to-follow examples throughout to help explain difficult concepts Features end-of-chapter exercises with solutions to exercises in the book. Two and Three Dimensional Calculus: with Applications in Science and Engineering is an ideal textbook for undergraduate students of engineering and applied sciences as well as those needing to use these methods for real problems in industry and commerce.
Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models. These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
By spinning 28 engaging mathematical tales, Orlin shows us that calculus is simply another language to express the very things we humans grapple with every day - love, risk, time and, most importantly, change. Divided into two parts, "Moments" and "Eternities," and drawing on everyone from Sherlock Holmes to Mark Twain to David Foster Wallace, Change is the Only Constant unearths connections between calculus, art, literature and a beloved dog named Elvis. This is not just maths for maths' sake; it's maths for the sake of becoming a wiser and more thoughtful human.
Blank and Krantz's Calculus 2e brings together time-tested methods and innovative thinking to address the needs of today's students, who come from a wide range of backgrounds and look ahead to a variety of futures. Using meaningful examples, credible applications, and incisive technology, Blank and Krantz's Calculus 2e strives to empower students, enhance their critical thinking skills, and equip them with the knowledge and skills to succeed in the major or discipline they ultimately choose to study. Blank and Krantz's engaging style and clear writing make the language of mathematics accessible, understandable and enjoyable, while maintaining high standards for mathematical rigor. Blank and Krantz's Calculus 2e is available with WileyPLUS, an online teaching and learning environment initially developed for Calculus and Differential Equations courses. WileyPLUS integrates the complete digital textbook with powerful student and instructor resources as well as online auto-graded homework.
This book is for instructors who think that most calculus textbooks are too long. In writing the book, James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? ESSENTIAL CALCULUS, Second Edition, offers a concise approach to teaching calculus that focuses on major concepts, and supports those concepts with precise definitions, patient explanations, and carefully graded problems. The book is only 900 pages--two-thirds the size of Stewart's other calculus texts, and yet it contains almost all of the same topics. The author achieved this relative brevity primarily by condensing the exposition and by putting some of the features on the book's website, www.StewartCalculus.com. Despite the more compact size, the book has a modern flavor, covering technology and incorporating material to promote conceptual understanding, though not as prominently as in Stewart's other books. ESSENTIAL CALCULUS features the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.
The new edition of Calculus continues to bring together the best of both new and traditional curricula in an effort to meet the needs of even more instructors teaching calculus. The author team's extensive experience teaching from both traditional and innovative books and their expertise in developing innovative problems put them in an unique position to make this new curriculum meaningful for those going into mathematics and those going into the sciences and engineering. This new text exhibits the same strengths from earlier editions including an emphasis on modeling and a flexible approach to technology.
Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published before but have influenced the field for more than two decades. Other chapters contain fresh, original work and bring readers to the current frontier of research. The title reflects the fruitful interplay between diverse mathematical fields bound together by the common theme of complex dynamics, including hyperbolic geometry, number theory, group theory, combinatorics, general dynamics, and many more. At the same time, the title alludes to the spirit of mathematical friendship among the researchers in this area. This book is a tribute to John Hubbard, one of the most inspiring pioneers in the field of complex dynamics.
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics.The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.
In "The Cartoon Guide to Calculus", master cartoonist and former Harvard calculus instructor Larry Gonick offers a complete and up-to-date illustrated course in college-level calculus. Using graphics and humor to lighten what is frequently a tough subject, Gonick entertainingly teaches all of the course essentials, functions, limits, derivatives, and integrals, with numerous examples and applications. He concludes with a bemused look at the paradoxes at the heart of calculus and the foundations of mathematics. And in an exciting first for the "Cartoon Guide" series, each chapter includes helpful problem sets, designed to help readers cement the lessons learned in each section. Combining entertainment and education, this is the perfect supplement for any study of calculus, whether readers are high school or college students, independent learners, or just lovers of Larry Gonick's bestselling, award-winning cartoon guides.
Sir Isaac Newton, one of the greatest scientists and mathematicians of all time, introduced the notion of a vector to define the existence of gravitational forces, the motion of the planets around the sun, and the motion of the moon around the earth. Vector calculus is a fundamental scientific tool that allows us to investigate the origins and evolution of space and time, as well as the origins of gravity, electromagnetism, and nuclear forces. Vector calculus is an essential language of mathematical physics, and plays a vital role in differential geometry and studies related to partial differential equations widely used in physics, engineering, fluid flow, electromagnetic fields, and other disciplines. Vector calculus represents physical quantities in two or three-dimensional space, as well as the variations in these quantities. The machinery of differential geometry, of which vector calculus is a subset, is used to understand most of the analytic results in a more general form. Many topics in the physical sciences can be mathematically studied using vector calculus techniques. This book is designed under the assumption that the readers have no prior knowledge of vector calculus. It begins with an introduction to vectors and scalars, and also covers scalar and vector products, vector differentiation and integrals, Gauss's theorem, Stokes's theorem, and Green's theorem. The MATLAB programming is given in the last chapter. This book includes many illustrations, solved examples, practice examples, and multiple-choice questions.
Fully worked solutions to odd-numbered exercises.
The Fifth Edition of this leading text offers substantial training in vectors and matrices, vector analysis, and partial differential equations. Vectors are introduced at the outset and serve at many points to indicate geometrical and physical significance of mathematical relations. Numerical methods are touched upon at various points, because of their practical value and the insights they give about theory.
This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best'' approximates a given set (dimension reduction of a data set); finding the ""best'' lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version. The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.
Die Mathematik gilt als schwierig, und ganz besonders die Analysis 1 wird von Studienanfangern als Stolperstein empfunden. Dabei brauchten die meisten nur etwas mehr Anleitung und vor allem viel Ubung, kurz, ein intensives Training. Dieses Buch bietet ein solches Training an. Der Aufbau orientiert sich am Grundkurs Analysis 1 des Autors, aber dank ausfuhrlicher Literaturhinweise mit inhaltlichen Zuordnungen kann das Training Analysis 1 als Begleitung zu jedem gangigen Lehrbuch und jeder Analysisvorlesung erfolgreich eingesetzt werden. Auf eine Zusammenfassung der Theorie folgen in jedem Abschnitt Tutorien mit ausfuhrlichen Erklarungen zu ausgewahlten, wichtigen Themen. Danach werden zahlreiche durchgerechnete Beispiele und schliesslich eine Reihe von Aufgaben mit mehr oder weniger ausfuhrlichen Losungshinweisen angeboten. Unterstutzt wird das Ganze durch viele Illustrationen, und ein Anhang enthalt ausfuhrlich durchgerechnete Musterlosungen zu allen Aufgaben.
Calculus textbooks can sometimes look to engage students with margin notes, anecdotes, and other devices. But often instructors find these distracting, preferring to captivate their science and engineering students with the beauty of the calculus itself. Taalman and Kohn's refreshing new textbook is designed to help instructors do just that. Taalman and Kohn's Calculus offers a streamlined, structured exposition of calculus that combines the clarity of classic textbooks with a modern perspective on concepts, skills, applications, and theory. Its sleek, uncluttered design eliminates sidebars, historical biographies, and asides to keep students focused on what's most important-the foundational concepts of calculus that are so important to their future academic and professional careers.
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of "p"-adic measures; the Euler Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new."
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test. |
![]() ![]() You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Excel in Complex Variables with the…
Bryce Wilkins, Theodore Hromadka II
Hardcover
R3,586
Discovery Miles 35 860
|