![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.
This book, the third of a three-volume work, is the outgrowth of the authors' experience teaching calculus at Berkeley. It is concerned with multivariable calculus, and begins with the necessary material from analytical geometry. It goes on to cover partial differention, the gradient and its applications, multiple integration, and the theorems of Green, Gauss and Stokes. Throughout the book, the authors motivate the study of calculus using its applications. Many solved problems are included, and extensive exercises are given at the end of each section. In addition, a separate student guide has been prepared.
For many students, calculus can be the most mystifying and frustrating course they will ever take. "The Calculus Lifesaver" provides students with the essential tools they need not only to learn calculus, but to excel at it. All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an "inner monologue"--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory. "The Calculus Lifesaver" combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.Serves as a companion to any single-variable calculus textbook Informal, entertaining, and not intimidating Informative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lecturesMore than 475 examples (ranging from easy to hard) provide step-by-step reasoning Theorems and methods justified and connections made to actual practice Difficult topics such as improper integrals and infinite series covered in detail Tried and tested by students taking freshman calculus
Much current research in computer science is concerned with two questions: is a program correct? And how can we improve a correct program preserving correctness? This latter question is known as the refinement of programs and the purpose of this book is to consider these questions in a formal setting. In fact, correctness turns out to be a special case of refinement and so the focus is on refinement. Although a reasonable background knowledge is assumed from mathematics and CS, the book is a self-contained introduction suitable for graduate students and researchers coming to this subject for the first time. There are numerous exercises provided of varying degrees of challenge.
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.
Calculus and change. The two words go together. Calculus is about change, and approaches to teaching calculus are changing dramatically. Thus it is both timely and appropriate to apply techniques of animation to the varied and important graphical aspects of calculus. AB a computer algebra system, Mathematica is an excellent tool for numerical and symbolic computation. It also has the power to generate striking and colorful graphical images and to animate them dynamically. The combination of these capabilities makes Mathematica a natural resource for exploring the changing world of calculus and approaches to mastering it. In addition, Mathematica notebooks are easy to edit, allowing flexible input for commands to Mathematica and stylish text for explanation to the reader. Much has been written about the use and importance of technology in the teaching and learning of calculus. We will not repeat the arguments or feign objectivity. We are enthusiastic believers in the value of a significant laboratory experience as part oflearning calculus, and we think Mathematica notebooks are a most appropriate and exciting way to provide that experience. The notebooks that follow represent our choice of laboratory topics for a course in one-variable calculus. They offer a balance between what we think belongs in a first-year calculus course and what lends itself well to exploration in a Mathematica laboratory setting.
The second of a three-volume work, this is the result of the authors'experience teaching calculus at Berkeley. The book covers techniques and applications of integration, infinite series, and differential equations, the whole time motivating the study of calculus using its applications. The authors include numerous solved problems, as well as extensive exercises at the end of each section. In addition, a separate student guide has been prepared.
The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.
Outlines theory and techniques of calculus, emphasizing strong understanding of concepts, and the basic principles of analysis. Reviews elementary and intermediate calculus and features discussions of elementary-point set theory, and properties of continuous functions.
White Noise Calculus is a distribution theory on Gaussian space, proposed by T. Hida in 1975. This approach enables us to use pointwise defined creation and annihilation operators as well as the well-established theory of nuclear space.This self-contained monograph presents, for the first time, a systematic introduction to operator theory on fock space by means of white noise calculus. The goal is a comprehensive account of general expansion theory of Fock space operators and its applications. In particular, first order differential operators, Laplacians, rotation group, Fourier transform and their interrelations are discussed in detail w.r.t. harmonic analysis on Gaussian space. The mathematical formalism used here is based on distribution theory and functional analysis, prior knowledge of white noise calculus is not required.
Modern software tools like Maple have the potential to alter radically the way mathematics is taught, learned, and done. Bringing such tools into the classroom during lectures, assignments, and examinations means that new ways oflooking at mathematics can becomepermanent fixtures ofthe curriculum. It is universal access that will make a software-based approach to mathematics become the norm. In 1988, with NSF funding under an III grant, I had the opportunity to bring Maple into the calculus classroom at Rose-Hulman Institute of Technology. Since then a new curriculum based on the availability ofcomputer algebra systems has evolved at RHIT and in my own courses. This volume contains a record of some of the insights gained into pedagogy using Maple in calculus. The activities and ideas captured in these Maple worksheets reflect concepts in calculus imple mented in Maple. There is an overt message to the reader that carries with it a side effect. However, it is possible that for one reader the side effect is the message and the message is the side effect I had intended to put before my audience examples extracted from my Maple based curriculum to entice a wider acceptance ofthe benefits of making a computer algebra system become the basis of a revised calculus syllabus. By examples I had hoped to demonstrate the "rightness" of using software tools for teaching and learning calculus."
The calculus has served for three centuries as the principal quantitative language of Western science. In the course of its genesis and evolution some of the most fundamental problems of mathematics were first con fronted and, through the persistent labors of successive generations, finally resolved. Therefore, the historical development of the calculus holds a special interest for anyone who appreciates the value of a historical perspective in teaching, learning, and enjoying mathematics and its ap plications. My goal in writing this book was to present an account of this development that is accessible, not solely to students of the history of mathematics, but to the wider mathematical community for which my exposition is more specifically intended, including those who study, teach, and use calculus. The scope of this account can be delineated partly by comparison with previous works in the same general area. M. E. Baron's The Origins of the Infinitesimal Calculus (1969) provides an informative and reliable treat ment of the precalculus period up to, but not including (in any detail), the time of Newton and Leibniz, just when the interest and pace of the story begin to quicken and intensify. C. B. Boyer's well-known book (1949, 1959 reprint) met well the goals its author set for it, but it was more ap propriately titled in its original edition-The Concepts of the Calculus than in its reprinting."
This is part two of a two-volume introduction to real analysis and is intended for honours undergraduates who have already been exposed to calculus. The emphasis is on rigour and on foundations. The material starts at the very beginning--the construction of the number systems and set theory--then goes on to the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. There are also appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of twenty-five to thirty lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory. The fourth edition incorporates a large number of additional corrections reported since the release of the third edition, as well as some additional new exercises.
Calculus Essentials For Dummies (9781119591207) was previously published as Calculus Essentials For Dummies (9780470618356). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Many colleges and universities require students to take at least one math course, and Calculus I is often the chosen option. Calculus Essentials For Dummies provides explanations of key concepts for students who may have taken calculus in high school and want to review the most important concepts as they gear up for a faster-paced college course. Free of review and ramp-up material, Calculus Essentials For Dummies sticks to the point with content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical two-semester high school calculus class or a college level Calculus I course, from limits and differentiation to integration and infinite series. This guide is also a perfect reference for parents who need to review critical calculus concepts as they help high school students with homework assignments, as well as for adult learners headed back into the classroom who just need a refresher of the core concepts. The Essentials For Dummies Series Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching-a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.
Introduces analysis, presenting analytical proofs backed by geometric intuition and placing minimum reliance on geometric argument. This edition separates continuity and differentiation and expands coverage of integration to include discontinuous functions. The discussion of differentiation of a vector function of a vector variable has been modernized by defining the derivative to be the Jacobian matrix; and, the general form of the chain rule is given, as is the general form of the implicit transformation theorem.
Factorial designs were introduced and popularized by Fisher (1935). Among the early authors, Yates (1937) considered both symmetric and asymmetric factorial designs. Bose and Kishen (1940) and Bose (1947) developed a mathematical theory for symmetric priIi't&-powered factorials while Nair and Roo (1941, 1942, 1948) introduced and explored balanced confounded designs for the asymmetric case. Since then, over the last four decades, there has been a rapid growth of research in factorial designs and a considerable interest is still continuing. Kurkjian and Zelen (1962, 1963) introduced a tensor calculus for factorial arrangements which, as pointed out by Federer (1980), represents a powerful statistical analytic tool in the context of factorial designs. Kurkjian and Zelen (1963) gave the analysis of block designs using the calculus and Zelen and Federer (1964) applied it to the analysis of designs with two-way elimination of heterogeneity. Zelen and Federer (1965) used the calculus for the analysis of designs having several classifications with unequal replications, no empty cells and with all the interactions present. Federer and Zelen (1966) considered applications of the calculus for factorial experiments when the treatments are not all equally replicated, and Paik and Federer (1974) provided extensions to when some of the treatment combinations are not included in the experiment. The calculus, which involves the use of Kronecker products of matrices, is extremely helpful in deriving characterizations, in a compact form, for various important features like balance and orthogonality in a general multifactor setting.
As educators, we understand the challenges you face in this course, and as authors, we have crafted a text that gives you the tools to meet them. This book has examples with clear explanations to help you learn how to logically solve mathematics problems. Read and work the examples and do the suggested NOW WORK Problems listed after them. Take advantage of the book's many features to help you to master calculus. Whether you are majoring in life sciences, business or economics, engineering or mathematics, this book has many applied exercises - some written by students like you - related to courses in a wide variety of majors. And a robust online support system includes a suite of easy-to-use and powerfully built learning tools, which include stepped-out examples, video tutorials, interactive figures, assessment quizzes, and hundreds of practice exercises with feedback and solutions. Achieve for Calculus redefines homework by offering guidance for every student and support for every instructor. Homework is designed to teach by correcting students' misconceptions through targeted feedback, meaningful hints, and full solutions, helping teach students conceptual understanding and critical thinking in real-world contexts.
This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress.
This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. \ ile we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same with the quiz problems provided by Fred."
This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. \ ile we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same with the quiz problems provided by Fred."
This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. While we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same vith the quiz problems provided by Fred."
The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. * The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. * The exercises come in groups of two and often four similar ones.
Full of relevant, diverse, and current real-world applications, Stefan Waner and Steven Costenoble's FINITE MATHEMATICS AND APPLIED CALCULUS, 6E, International Edition helps you relate to mathematics. A large number of the applications are based on real, referenced data from business, economics, the life sciences, and the social sciences. Thorough, clearly delineated spreadsheet and TI Graphing Calculator instruction appears throughout the book. Acclaimed for its readability and supported by the authors' popular website, this book will help you grasp and understand mathematics-whatever your learning style may be. |
You may like...
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R724
Discovery Miles 7 240
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R2,018
Discovery Miles 20 180
|