![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
This book, based on the course given by the author at the College of Mathematics of the Independent University of Moscow, introduces the reader to the language of generating functions, which is nowadays the main language of enumerative combinatorics. It starts with definitions, simple properties, and numerous examples of generating functions. It then discusses topics, such as formal grammars, generating functions in several variables, partitions and decompositions, and the exclusion-inclusion principle. In the final chapter, the author describes applications of generating functions to enumeration of trees, plane graphs, and graphs embedded in two-dimensional surfaces. Throughout the book, the reader is motivated by interesting examples rather than by general theories. It also contains a lot of exercises to help the reader master the material. Little beyond the standard calculus course is necessary to understand the book. It can serve as a text for a one-semester undergraduate course in combinatorics.
Everything you need to know–basic essential concepts–about calculus For anyone looking for a readable alternative to the usual unwieldy calculus text, here’s a concise, no-nonsense approach to learning calculus. Following up on the highly popular first edition of Understanding Calculus, Professor H. S. Bear offers an expanded, improved edition that will serve the needs of every mathematics and engineering student, or provide an easy-to-use refresher text for engineers. Understanding Calculus, Second Edition provides in a condensed format all the material covered in the standard two-year calculus course. In addition to the first edition’s comprehensive treatment of one-variable calculus, it covers vectors, lines, and planes in space; partial derivatives; line integrals; Green’s theorem; and much more. More importantly, it teaches the material in a unique, easy-to-read style that makes calculus fun to learn. By explaining calculus concepts through simple geometric and physical examples rather than formal proofs, Understanding Calculus, Second Edition, makes it easy for anyone to master the essentials of calculus. If the dry "theorem-and-proof" approach just doesn’t work, and the traditional twenty pound calculus textbook is just too much, this book is for you.
How our understanding of calculus has evolved over more than three centuries, how this has shaped the way it is taught in the classroom, and why calculus pedagogy needs to change Calculus Reordered takes readers on a remarkable journey through hundreds of years to tell the story of how calculus evolved into the subject we know today. David Bressoud explains why calculus is credited to seventeenth-century figures Isaac Newton and Gottfried Leibniz, and how its current structure is based on developments that arose in the nineteenth century. Bressoud argues that a pedagogy informed by the historical development of calculus represents a sounder way for students to learn this fascinating area of mathematics. Delving into calculus's birth in the Hellenistic Eastern Mediterranean-particularly in Syracuse, Sicily and Alexandria, Egypt-as well as India and the Islamic Middle East, Bressoud considers how calculus developed in response to essential questions emerging from engineering and astronomy. He looks at how Newton and Leibniz built their work on a flurry of activity that occurred throughout Europe, and how Italian philosophers such as Galileo Galilei played a particularly important role. In describing calculus's evolution, Bressoud reveals problems with the standard ordering of its curriculum: limits, differentiation, integration, and series. He contends that the historical order-integration as accumulation, then differentiation as ratios of change, series as sequences of partial sums, and finally limits as they arise from the algebra of inequalities-makes more sense in the classroom environment. Exploring the motivations behind calculus's discovery, Calculus Reordered highlights how this essential tool of mathematics came to be.
Sir Horace Lamb (1849 1934) the British mathematician, wrote a number of influential works in classical physics. A pupil of Stokes and Clerk Maxwell, he taught for ten years as the first professor of mathematics at the University of Adelaide before returning to Britain to take up the post of professor of physics at the Victoria University of Manchester (where he had first studied mathematics at Owens College). As a teacher and writer his stated aim was clarity: 'somehow to make these dry bones live'. The first edition of this work was published in 1897, the third revised edition in 1919, and a further corrected version just before his death. This edition, reissued here, remained in print until the 1950s. As with Lamb's other textbooks, each section is followed by examples.
CALCULUS + PEPPERONI / FUN = MATH SUCCESS Do you want to do well on your calculus exam? Are you looking for a quick refresher course? Or would you just like to get a taste of what calculus is all about? If so, you’ve selected the right book. Calculus and Pizza is a creative, surprisingly delicious overview of the essential rules and formulas of calculus, with tons of problems for the learner with a healthy appetite. Setting up residence in a pizza parlor, Clifford Pickover focuses on procedures for solving problems, offering short, easy-to-digest chapters that allow you to quickly get the essence of a technique or question. From exponentials and logarithms to derivatives and multiple integrals, the book utilizes pepperoni, meatballs, and more to make complex topics fun to learn–emphasizing basic, practical principles to help you calculate the speed of tossed pizza dough or the rising cost of eggplant parmigiana. Plus, you’ll see how simple math–and a meal–can solve especially curious and even mind-shattering problems. Authoritatively and humorously written, Calculus and Pizza provides a lively–and more tasteful–approach to calculus. "Pickover has published nearly a book a year in which he stretches the limits of computers, art, and thought." "A perpetual idea machine, Clifford Pickover is one of the most creative, original thinkers in the world today."
R for College Mathematics and Statistics encourages the use of R in mathematics and statistics courses. Instructors are no longer limited to ``nice'' functions in calculus classes. They can require reports and homework with graphs. They can do simulations and experiments. R can be useful for student projects, for creating graphics for teaching, as well as for scholarly work. This book presents ways R, which is freely available, can enhance the teaching of mathematics and statistics. R has the potential to help students learn mathematics due to the need for precision, understanding of symbols and functions, and the logical nature of code. Moreover, the text provides students the opportunity for experimenting with concepts in any mathematics course. Features: Does not require previous experience with R Promotes the use of R in typical mathematics and statistics course work Organized by mathematics topics Utilizes an example-based approach Chapters are largely independent of each other
This book is a collection of lecture notes and survey papers based on the minicourses given by leading experts at the 2016 CRM Summer School on Spectral Theory and Applications, held from July 4-14, 2016, at Universite Laval, Quebec City, Quebec, Canada. The papers contained in the volume cover a broad variety of topics in spectral theory, starting from the fundamentals and highlighting its connections to PDEs, geometry, physics, and numerical analysis.
Designed for the three-semester engineering calculus course, CALCULUS: EARLY TRANSCENDENTAL FUNCTIONS, Sixth Edition, continues to offer instructors and students innovative teaching and learning resources. The Larson team always has two main objectives for text revisions: to develop precise, readable materials for students that clearly define and demonstrate concepts and rules of calculus; and to design comprehensive teaching resources for instructors that employ proven pedagogical techniques and save time. The Larson/Edwards Calculus program offers a solution to address the needs of any calculus course and any level of calculus student. Every edition from the first to the sixth of CALCULUS: EARLY TRANSCENDENTAL FUNCTIONS has made the mastery of traditional calculus skills a priority, while embracing the best features of new technology and, when appropriate, calculus reform ideas.
This book provides a full and clear account of the essentials of calculus, presented in an engaging style that is both readable and mathematically precise. Concepts and central ideas are emphasized throughout. Physical examples and interpretations play a leading role, and alternative approaches to fundamental ways of thinking help the student develop the intuitive understanding so important in science and engineering. Many questions and problems, with detailed solutions, encourage active reading and independent thought. Usable either as a basic classroom text or as a supplement that will give the reader a grasp of calculus as a whole, the book is also ideally suited for self-study.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.
How math holds the keys to improving one's health, wealth, and love life What's the best diet for overall health and weight management? How can we change our finances to retire earlier? How can we maximize our chances of finding our soul mate? In The Calculus of Happiness, Oscar Fernandez shows us that math yields powerful insights into health, wealth, and love. Using only high-school-level math (precalculus with a dash of calculus), Fernandez guides us through several of the surprising results, including an easy rule of thumb for choosing foods that lower our risk for developing diabetes (and that help us lose weight too), simple "all-weather" investment portfolios with great returns, and math-backed strategies for achieving financial independence and searching for our soul mate. Moreover, the important formulas are linked to a dozen free online interactive calculators on the book's website, allowing one to personalize the equations. Fernandez uses everyday experiences--such as visiting a coffee shop--to provide context for his mathematical insights, making the math discussed more accessible, real-world, and relevant to our daily lives. Every chapter ends with a summary of essential lessons and takeaways, and for advanced math fans, Fernandez includes the mathematical derivations in the appendices. A nutrition, personal finance, and relationship how-to guide all in one, The Calculus of Happiness invites you to discover how empowering mathematics can be.
Understanding the techniques and applications of calculus is at the heart of mathematics, science and engineering. This book presents the key topics of introductory calculus through an extensive, well-chosen collection of worked examples, covering:
Aimed at first-year undergraduates in mathematics and the physical sciences, the only prerequisites are basic algebra, coordinate geometry and the beginnings of differentiation as covered in school. The transition from school to university mathematics is addressed by means of a systematic development of important classes of techniques, and through careful discussion of the basic definitions and some of the theorems of calculus, with proofs where appropriate, but stopping short of the rigour involved in Real Analysis. The influence of technology on the learning and teaching of mathematics is recognised through the use of the computer algebra and graphical package MAPLE to illustrate many of the ideas. Readers are also encouraged to practice the essential techniques through numerous exercises which are an important component of the book. Supplementary material, including detailed solutions to exercises and MAPLE worksheets, is available via the web.
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Calculus Made Easy has long been the most popular calculus primer, and this major revision of the classic math text makes the subject at hand still more comprehensible to readers of all levels. With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.
This is the last of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. This volume distinguishes itself from others of the same genre in getting the mathematics right. In trigonometry, this volume makes explicit the fact that the trigonometric functions cannot even be defined without the theory of similar triangles. It also provides details for extending the domain of definition of sine and cosine to all real numbers. It explains as well why radians should be used for angle measurements and gives a proof of the conversion formulas between degrees and radians. In calculus, this volume pares the technicalities concerning limits down to the essential minimum to make the proofs of basic facts about differentiation and integration both correct and accessible to school teachers and educators; the exposition may also benefit beginning math majors who are learning to write proofs. An added bonus is a correct proof that one can get a repeating decimal equal to a given fraction by the “long division†of the numerator by the denominator. This proof attends to all three things all at once: what an infinite decimal is, why it is equal to the fraction, and how long division enters the picture. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.
This is a reprint of A First Course in Calculus, which has gone through five editions since the early sixties. It covers all the topics traditionally taught in the first-year calculus sequence in a brief and elementary fashion. As sociological and educational conditions have evolved in various ways over the past four decades, it has been found worthwhile to make the original edition available again. The audience consists of those taking the first calculus course, in high school or college. The approach is the one which was successful decades ago, involving clarity, and adjusted to a time when the students¿ background was not as substantial as it might be. We are now back to those times, so it¿s time to start over again. There are no epsilon-deltas, but this does not imply that the book is not rigorous. Lang learned this attitude from Emil Artin, around 1950.
Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by Professor Kac over the last few years at MIT.
Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.
Based on the use of graphing calculators by students enrolled in calculus, there is enough material here to cover precalculus review, as well as first-year single variable calculus topics. Intended for use in workshop-centered calculus courses, and developed as part of the well-known NSF-sponsored project, the text is for use with students in a math laboratory, instead of a traditional lecture course. There are student-oriented activities, experiments and graphing calculator exercises throughout the text. The authors themselves are well-known teachers and constantly striving to improve undergraduate mathematics teaching.
From the reviews: "These books (Introduction to Calculus and Analysis Vol. I/II) are very well written. The mathematics are rigorous but the many examples that are given and the applications that are treated make the books extremely readable and the arguments easy to understand. These books are ideally suited for an undergraduate calculus course. Each chapter is followed by a number of interesting exercises. More difficult parts are marked with an asterisk. There are many illuminating figures...Of interest to students, mathematicians, scientists and engineers. Even more than that."Newsletter on Computational and Applied Mathematics, 1991"...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." Acta Scientiarum Mathematicarum, 1991
From the reviews: "These books (Introduction to Calculus and Analysis Vol. I/II) are very well written. The mathematics are rigorous but the many examples that are given and the applications that are treated make the books extremely readable and the arguments easy to understand. These books are ideally suited for an undergraduate calculus course. Each chapter is followed by a number of interesting exercises. More difficult parts are marked with an asterisk. There are many illuminating figures...Of interest to students, mathematicians, scientists and engineers. Even more than that."Newsletter on Computational and Applied Mathematics, 1991"...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students.Acta Scientiarum Mathematicarum, 1991
This project is based on the use of graphing calculators by students enrolled in calculus. There is enough material in the book to cover precalculus review, as well as first year single variable calculus topics. Intended for use in workshop-centered calculus courses. Developed as part of the well-known NSF-sponsored project, Workshop Mathematics, the text is intended for use with students in a math laboratory, instead of a traditional lecture course. There are student-oriented activities, experiments and graphing calculator exercises found throughout the text. The authors are well-known teachers and innovative thinkers about ways to improve undergraduate mathematics teaching.
The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.
Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. |
![]() ![]() You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R2,141
Discovery Miles 21 410
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R765
Discovery Miles 7 650
|