![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > General
This textbook is for advanced students who already are familiar with the elementary concepts of statics and the strength of materials. The principles of linear continuum mechanics and linear elastic material behavior are presented. They build the foundation for the later treatment of structures such as beams, bars, plates and shells. Particular attention is paid to the respective thin-walled cases. The text also contains some chapters on the more and more important topic of dynamics of structures. Moreover, it provides the fundamental principles underlying modern computer methods. The book is structured such that in each chapter the theoretical considerations are accompanied by several illustrative examples demonstrating the application of these results. At the end of each chapter, additional problems are included. The solutions to these problems are given in the last chapter.
This book contains contributions from the Spanish Relativity Meeting, ERE 2012, held in" "Guimaraes, Portugal, September 2012. It features more than 70 papers on a range of topics in general relativity and gravitation, from mathematical cosmology, numerical relativity and black holes to string theory and quantum gravity. Under the title "Progress in Mathematical Relativity, Gravitation and Cosmology," ERE 2012 was attended by an exceptional international list of over a hundred participants from the five continents and over forty countries. ERE is organized every year by one of the Spanish or Portuguese groups working in this area and is supported by the Spanish Society of Gravitation and Relativity (SEGRE). This book will be of interest to researchers in mathematics and physics. "
This thesis presents valuable contributions to several aspects of the rapidly growing field of gravitational wave astrophysics. The potential sources of gravitational waves in globular clusters are analyzed using sophisticated dynamics simulations involving intermediate mass black holes and including, for the first time, high-order post-Newtonian corrections to the equations of motion. The thesis further demonstrates our ability to accurately measure the parameters of the sources involved in intermediate-mass-ratio inspirals of stellar-mass compact objects into hundred-solar-mass black holes. Lastly, it proposes new techniques for the computationally efficient inference on gravitational waves. On 14 September 2015, the LIGO observatory reported the first direct detection of gravitational waves from the merger of a pair of black holes. For a brief fraction of a second, the power emitted by this merger exceeded the combined output of all stars in the visible universe. This has since been followed by another confirmed detection and a third candidate binary black hole merger. These detections heralded the birth of an exciting new field: gravitational-wave astrophysics.
This book presents the theory of continuum mechanics for mechanical, thermodynamical, and electrodynamical systems. It shows how to obtain governing equations and it applies them by computing the reality. It uses only open-source codes developed under the FEniCS project and includes codes for 20 engineering applications from mechanics, fluid dynamics, applied thermodynamics, and electromagnetism. Moreover, it derives and utilizes the constitutive equations including coupling terms, which allow to compute multiphysics problems by incorporating interactions between primitive variables, namely, motion, temperature, and electromagnetic fields. An engineering system is described by the primitive variables satisfying field equations that are partial differential equations in space and time. The field equations are mostly coupled and nonlinear, in other words, difficult to solve. In order to solve the coupled, nonlinear system of partial differential equations, the book uses a novel collection of open-source packages developed under the FEniCS project. All primitive variables are solved at once in a fully coupled fashion by using finite difference method in time and finite element method in space.
This second volume of the series Lecture Notes in Applied and Computational Mechanics is the second part of the compendium of reviewed articles presented at the 11th EUROMECH-MECAMAT conference entitled "Mechanics of microstructured solids: cellular materials, fibre reinforced solids and soft tissues," which took place in Torino (Italy) in March 10-14, 2008, at the Museo Regional delle Scienze. This EUROMECH-MECAMAT conference was jointly organized by the Dipartimento di Matematica dell'Universita di Torino, Italy and the INPL Institute (LEMTA, Nancy-Universite, France). Prof. Franco Pastrone and Prof. Jean-Francois Ganghoffer were the co-chairmen.
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. "Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, "improves onanalready highlycomplete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide."
In 1998 the chairman of the Russian National Committee of TMM Professor Arcady Bessonov, recommended one of authors of this book to be come a member of the IFToMM Permanent Commission on the History of Mechanisms and Machines Sciences (PC HMMS). Willy-nilly from this time the history of technique, as hobby passed on to a serious the employment in the history of engineering science. Interest history of a subject is natural for Professor, a leading a course of Theory of Mechanisms and Machines in Bauman University. This interest is supported by the fact that Bauman University is one of the oldest technical universities in Russia, and the course "Applied Mechanics" - later "Theory of Mechanisms and Machines" was the first systematic course in Russia. The second author supervises a cycle of laboratory works on TMM. Models of mechanisms are placed in laboratory in show-windows of ancient cases quite possibly coevals of the first course. He became interested in contents of these cases: firstly in models, and then in their origin. Later he occupied himself with the creation of a web-site "The Collection of mechanisms in department TMM in Bauman University". Gradually both authors had the idea of cooperation, although several years previously, we could not imagine this happening. We took an active part in the work of PC HMMS from 2000. It was promoted by of chairman of the commission Professor Marco Ceccarelli.
This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15 17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included despite space and time constraints. Basic concepts and fundamentals techniques have been emphasized upon, while also including highly specialized topics and methods (such as nanotribology, bio-nanotribology). Care has been taken to generate interest for a wide range of readers, considering the interdisciplinary nature of the subject."
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.
The major developments in the field of fluid and solid mechanics
are scattered throughout an array of scientific journals, making it
often difficult to find what the real advances are, especially for
a researcher new to the field. The Advances in Applied Mechanics
book series draws together the recent significant advances in
various topics in applied mechanics.
This work investigates gravitational wave production in the early universe and identifies potentially observable features, thereby paving the way for future gravitational wave experiments. It focuses on gravitational wave production in two scenarios: inflation in a model inspired by loop quantum gravity, and preheating at the end of inflation. In the first part, it is demonstrated that gravitational waves' spectrum differs from the result obtained using ordinary general relativity, with potentially observable consequences that could yield insights into quantum gravity. In the second part, it is shown that the cosmic gravitational wave background is anisotropic at a level that could be detected by future experiments. Gravitational waves promise to be an rich source of information on the early universe. To them, the universe has been transparent from its earliest moments, so they can give us an unobstructed view of the Big Bang and a means to probe the fundamental laws of nature at very high energies.
This book develops a modern presentation of Continuum Mechanics, oriented towards numerical applications in the ?elds of nonlinear analysis of solids, structures and ?uids. Kinematics of the continuum deformation, including pull-back/push-forward transformations between di erent con?gurations; stress and strain measures; objective stress rate and strain rate measures; balance principles; constitutive relations, with emphasis on elasto-plasticity of metals and variational prin- ples are developed using general curvilinear coordinates. Being tensor analysis the indispensable tool for the development of the continuum theory in general coordinates, in the appendix an overview of t- soranalysisisalsopresented. Embedded in the theoretical presentation, application examples are dev- oped to deepen the understanding of the discussed concepts. Even though the mathematical presentation of the di erent topics is quite rigorous; an e ort is made to link formal developments with engineering ph- ical intuition. This book is based on two graduate courses that the authors teach at the Engineering School of the University of Buenos Aires and it is intended for graduate engineering students majoring in mechanics and for researchers in the ?elds of applied mechanics and numerical methods. VIII Preface I am grateful to Klaus-Jurgen Bathe for introducing me to Computational Mechanics, for his enthusiasm, for his encouragement to undertake challenges and for his friendship."
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
The essential aim of the present book is to consider a wide set of problems arising in the mathematical modelling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities, and the transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems. Important new results concern contact problems with friction. The Coulomb friction law and some others are considered, in which relative sliding velocities appear.
This book is the authors' crowning achievement. In particular, it comprises the problems contained in the three books, together with detailed solutions and explanations. Thus, Part I (Chapters 1--12) is related to the book "The Mathematical Theory of Elasticity," Part II (Chapters 13--21) covers the problems in the book "Thermal Stresses," and Part III (Chapters 22--26) covers problems in the book "Thermal Stresses - Advanced Theory and Applications." The three parts are augmented by Part IV (Chapters 27--29), Numerical Methods, that covers three important topics: Method of Characteristics, Finite Element Method for Coupled Thermoelasticity, and Boundary Element Method for Coupled Thermoelasticity. As Part IV is independent of the earlier parts, it may be studied separately. The book is an indispensable companion to all who study any of the three books listed above, and should also be of importance to those interested in the topics covered in Part IV. It contains not only the problems and their careful and often extensive solutions, but also explanations in the form of introductions that appear at the beginning of chapters in Parts I, II and III. Therefore, this book links the three listed books into one comprehensive entity consisting of four publications.
This book presents contributions on the current problems in a number of topical areas of nonlinear dynamics and physics, written by experts from Russia, Ukraine, Israel, Germany, Poland, Italy, the Netherlands, the USA, and France. The book is dedicated to Professor Leonid I. Manevitch, an outstanding scholar in the fields of Mechanics of Solids, Nonlinear Dynamics, and Polymer Physics, on the occasion of his 80th birthday.
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between general relativity, black holes and Planck stars. Finally, the return on investment in quantum-gravitation research is illuminated. The book is intended for graduate students and researchers entering the field.
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
This volume is dedicated to Jacob Aboudi, a ?ne scientist who has made seminal c- tributions in applied mechanics. The papers presented here re?ect the appreciation of many of Jacob's colleagues. A publication list f- lowing this introduction provides an indi- tion of his distinguished academic career, c- rently in its ?fth decade, and the breadth of hisknowledge. His papersconsistentlydem- strate originality, innovation and diligence. This list uncovers the methodical work of a dedicated researcher whose achievements established him as a leading authority in the area of mathematical modeling of the beh- ior of heterogeneous materials, the area which became known as homogenization theory. Starting in 1981, Jacob established a micromechanical model known as the Method of Cells (MOC) which evolved into the Generalized Method of Cells (GMC) that predicts the macroscopic response of composite materials as a function of the pr- erties, volume fractions, shapes, and constitutive behavior of its constituents. The versatility of the model has been demonstrated to effectively incorporate various types of constituent material behavior (i. e. , both coupled and uncoupled mecha- cal, thermal, electrical and magnetic effects). As a result of its potential in providing an ef?cient tool for the emerging ?eld of multiscale analysis, the method gained increasing attention and became a subject for further research.
A translation of the highly acclaimed text by Roberto Tenenbaum (originally published in Portuguese). Tenenbaum's DYNAMICS covers the full range of topics included in a complete basic course designed for undergraduate students in engineering. Requiring no more than a basic course in calculus, the text employs an intuitive approach, from the point of view of Newtonian mechanics, that avoids the complications of Hamiltonian and Lagrangian formalism. The balance between analysis and practical examples also avoids the tendency of other engineering- oriented texts to assume an antipathy towards abstract thinking among engineers. The analytical approach, presented in a simple but rigorous way, gives the required tools for modeling novel practical situations.
This book presents a modern and unconventional introduction to anisotropy. The first part presents a general description of Anisotropic Elasticity theories while the second part focuses on the polar formalism: the theoretical bases and results are completely developed along with applications to design problems of laminated anisotropic structures. The book is based on lectures on anisotropy which have been held at Ecole Polytechnique in Paris.
This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials. |
![]() ![]() You may like...
Game Theory and Networks - New…
Surajit Borkotokey, Rajnish Kumar, …
Hardcover
R4,255
Discovery Miles 42 550
Equilibrium Theory for Cournot…
Pierre von Mouche, Federico Quartieri
Hardcover
Game Theoretic Problems in Network…
Y. Narahari, Dinesh Garg, …
Hardcover
R3,535
Discovery Miles 35 350
Models for Cooperative Games with Fuzzy…
Andres Jimenez-Losada
Hardcover
Hazardous Forecasts and Crisis Scenario…
Arnaud Clement-Grandcourt, Herve Fraysse
Hardcover
Networks in the Global World V…
Artem Antonyuk, Nikita Basov
Hardcover
R4,404
Discovery Miles 44 040
Soft Computing in Management and…
Anna M Gil-Lafuente, Jaime Gil-Lafuente, …
Hardcover
R5,663
Discovery Miles 56 630
Co-utility - Theory and Applications
Josep Domingo-Ferrer, David Sanchez
Hardcover
The Future of Economic Design - The…
Jean-Francois Laslier, Herve Moulin, …
Hardcover
R4,618
Discovery Miles 46 180
|