![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > General
The question of when and how the basic concepts that characterize modern science arose in Western Europe has long been central to the history of science. This book examines the transition from Renaissance engineering and philosophy of nature to classical mechanics oriented on the central concept of velocity. For this new edition, the authors include a new discussion of the doctrine of proportions, an analysis of the role of traditional statics in the construction of Descartes' impact rules, and go deeper into the debate between Descartes and Hobbes on the explanation of refraction. They also provide significant new material on the early development of Galileo's work on mechanics and the law of fall.
Investigation of vortex wakes behind various aircraft, especially behind wide bodied and heavy cargo ones, is of both scientific and practical in terest. The vortex wakes shed from the wing's trailing edge are long lived and attenuate only atdistances of10-12kmbehindthe wake generating aircraft. The encounter of other aircraft with the vortex wake of a heavy aircraft is open to catastrophic hazards. For example, air refueling is adangerous operationpartly due to thepossibility of the receiver aircraft's encountering the trailing wake of the tanker aircraft. It is very important to know the behavior of vortex wakes of aircraft during theirtakeoff andlanding operations whenthe wakes canpropagate over the airport's ground surface and be a serious hazard to other depart ing or arriving aircraft. This knowledge can help in enhancing safety of aircraft's movements in the terminal areas of congested airports where the threat of vortex encounters limits passenger throughput. Theoreticalinvestigations of aircraft vortex wakes arebeingintensively performedinthe major aviationnations.Usedforthispurpose are various methods for mathematical modeling of turbulent flows: direct numerical simulation based on the Navier-Stokes equations, large eddy simulation using the Navier-Stokes equations in combination with subrigid scale modeling, simulation based on the Reynolds equations closed with a differential turbulence model. These approaches are widely used in works of Russian and other countries' scientists. It should be emphasized that the experiments in wind tunnels and studies of natural vortex wakes behind heavy and light aircraft in flight experiments are equally important.
This volume contains eleven contributions on boundary integral equation and boundary element methods. Beside some historical and more analytical aspects in the formulation and analysis of boundary integral equations, modern fast boundary element methods are also described and analyzed from a mathematical point of view. In addition, the book presents engineering and industrial applications that show the ability of boundary element methods to solve challenging problems from different fields.
Classical plasticity theory of metals is independent of the hydrostatic pressure. However if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is described in detail in this monograph and applied to a wide range of different important materials in the last part of this book.
This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. This is a unique collection, and the library as a whole sets out to comprehensively and authoritatively cover and review at research level the subject matter with all its ramifications. All the chapters are self-contained and can be read independently of each other, though they are of course thematically interrelated.
This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material's reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
In this thesis the author discusses the phenomenology of supersymmetric models by means of experimental data set analysis of the electric dipole moment. There is an evaluation of the elementary processes contributing to the electric dipole moments within R-parity-violating supersymmetry, which call for higher-order perturbative computations. A new method based on linear programming is developed and for
the first time the non-trivial parameter space of R-parity
violation respecting the constraints from existing experimental
data of the electric dipole moment is revealed. As well, the
impressive efficiency of the new method in scanning the parameter
space of the R-parity-violating sector is effectively demonstrated.
This new method makes it possible to extract from the experimental
data a more reliable constraint on the R-parity violation.
This thesis first reveals the mechanism of Goertler instabilities and then demonstrates how transitions at hypersonic flows can be effectively controlled (either promoted or suppressed) with Goertler or Klebanoff modes. It focuses on understanding and controlling flow transitions from mild laminar to fully turbulent flows at high speeds-aspects that have become crucial at the dawn of an incredible era, in which hypersonic vehicles are becoming available. Once this occurs, it will be possible to travel from Beijing to Los Angeles within just 2 hours, and we will all live in a genuinely global village-and not just virtually, but physically. Goertler instabilities have often been used to promote flow transition in hypersonic vehicles. However, how Goertler instabilities are excited and how they evolve in hypersonic flows are questions that have yet to be answered.
The discovery of uniform latex particles by polymer chemists of the Dow Chemical Company nearly 50 years ago opened up new exciting fields for scientists and physicians and established many new biomedical applications. Many in vitro diagnostic tests such as the latex agglutination tests, analytical cell and phagocytosis tests have since become rou tine. They were all developed on the basis of small particles bound to biological active molecules and fluorescent and radioactive markers. Further developments are ongoing, with the focus now shifted to applications of polymer particles in the controlled and di rected transport of drugs in living systems. Four important factors make microspheres interesting for in vivo applications: First, biocompatible polymer particles can be used to transport known amounts of drug and re lease them in a controlled fashion. Second, particles can be made of materials which bio degrade in living organisms without doing any harm. Third, particles with modified surfaces are able to avoid rapid capture by the reticuloendothelial system and therefore en hance their blood circulation time. Fourth, combining particles with specific molecules may allow organ-directed targeting."
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
This thesis explores the connection between gravity and thermodynamics and provides a unification scheme that opens up new directions of exploration. Further elaborating on the Hawking effect and the possibility of singularity avoidance, the author not only discusses the information loss paradox at a broader level but also provides a possible solution to it. As the final frontier, it describes some novel effects arising from the microscopic structure of spacetime. Taken as a whole, the thesis addresses three major research areas in gravitational physics: it starts with classical gravity, proceeds to the black hole information loss paradox, and closes with Planck scale physics. The thesis is written in a lucid and pedagogical style, with an introduction accessible to researchers from other branches of physics and a d iscussion presenting open questions and future directions, which will benefit and hopefully inspire next-generation researchers.
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, which may have horizontal slopes sandwiched in between them.
The intention of this booklet is a brief but general introduction into the treatment of the Finite Element Method (FEM). The FEM has become the leading method in computer-oriented mechanics, so that many scienti?c brancheshavegrownup besides overthelastdecades. Nevertheless,theFEM today is a question of economy. On the one hand its industrial application is forced to reduce product development costs and time, on the other hand a large number of commercial FEM codes and a still growing number of software for e?ective pre- and postprocessors are available in the meantime. Due to that, today it is a quite challenging task to operate with all these di?erent tools at the same time and to understand all handling and so- tion techniques developed over the last years. So, we want to help in getting a deeper insight into the main "interfaces" between the "customers of the FEM" and the codes itself by providing a totally open structured FE-code based on Matlab, which is a very powerful tool in operating with matrix based formulations. That idea and conditions forced us some years ago to initiateDAEdalon as a tool for general FE developments in research appli- tions. In spite of still existing high sophisticated - mostly commercial - FE codes, the success and the acceptance of such a structured tool justify that decision afterwards more and more.
This book presents new insights into Leibniz's research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler's influence on Leibniz's planetary theory and more generally, on Leibniz's concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz's works provide a frame of reference. The book then goes on to discuss research on Leibniz's conception of gravity and the connection between Leibniz and Kepler.
This book is a compilation of selected papers from the 2014 New Trends in Fatigue and Fracture (NT2F14) Conference, which was held in Belgrade, Serbia. This prestigious conference brought together delegates from around the globe to discuss how to characterize, predict and analyze the fatigue and fracture of engineering materials, components, and structures using theoretical, experimental, numerical and practical approaches. It highlights some important new trends in fracture mechanics presented at the conference, such as: * two-parameter fracture mechanics, arising from the coupling of fracture toughness and stress constraints * high-performance steel for gas and oil transportation and production (pressure vessels and boilers) * safety and reliability of welded joints This book includes 12 contributions from well-known international scientists and a special tribute dedicated to the scientific contributions of Stojan Sedmark, who passed away in 2014.
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Fryba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
Michael Faraday (1791-1867) was one of the world's greatest experimental philosophers and popularizes of science. These six extraordinary lectures on gravitation, cohesion, chemical affinity, heat, magnetism, and electricity were intended for young audiences. Together, they offer the reader a fascinating introduction to some of Faraday's most important work on the correlation between the physical forces of the universe.
Papers of the Paris meeting in June 1990 on Local Group Galaxies, molecules in early-type galaxies, observations of spiral structure in molecular clouds, a comparison with other gaseous components and IR emission, interacting galaxies and starbursts, gas and star dynamics, galaxy evolution, IRAS ult
This volume of proceedings contains the papers from the third in a successful series of conferences organized by the Deutscher Verband fur Materialforschung undprufung DVM]. The purpose of the conference was to review methods of improving the performance of materials and structures and to extend working life, especially under complex loading conditions such as environmental attack and high temperature degradation as well as providing a comprehensive evaluation of recent progress in low cycle fatigue and elasto-plastic behaviour of materials. Safe design and effective operation of highly stressed structures rely on the extensive use of mechanical approaches and micromechanics analysis to predict the deformation and fracture response of materials in service. Because of the need to create greater confidence in the engineering world in advanced materials as efficient replacements for conventional materials, many of the papers emphasize the role of new materials and emerging technology.
On September 15, 2017, the Cassini spacecraft sent its final transmission to the Earth as it entered the atmosphere of Saturn, ending its historic 13 year mission at the ringed planet. This book is a beautifully illustrated journey of discovery through the Saturn system. Cassini's instruments have revealed never seen before details, including the only extraterrestrial lakes known in the solar system, and have provided unprecedented views of the rings, moons, and the planet itself. Results from Cassini's dramatic Grand Finale of ring-grazing and planet-skimming orbits are included in this expanded and updated second edition. Saturn is the jewel of the solar system. The Cassini spacecraft has been exploring the ringed planet and its moons and rings since 2004 and has helped us solve many of its mysteries while generating a wealth of new questions. Cassini has observed the bizarre mountains of Iapetus, the geysers of Enceladus, the lakes of Titan, and the dynamic and evolving rings. Along the way, this book explores and explains the fundamental processes that shape not just the Saturn system, but planets and moons in general. Written for the general audience with an emphasis on the fundamental physics of planetary systems, The Ringed Planet is a fascinating exploration of the Saturn system that places Saturn in the context of the solar system as a whole. Cassini's instruments have revealed Enceladus and Titan to have subsurface oceans of liquid water. Its cameras have returned stunning images of rings in turmoil, a tumbling moon, the only extraterrestrial lakes known in the solar system, a hexagon of clouds, some of the highest mountains in the solar system and much more. More than a journey of discovery at Saturn, The Ringed Planet is also an introduction to how planetary systems work.
This volume presents a carefully written introduction to nonlinear waves in the natural sciences and engineering. It contains many classical results as well as more recent results, dealing with topics such as the forced Korteweg--de Vries equation and material relating to X-ray crystallography. The volume contains nine chapters. Chapter 1 concerns asymptotics and nonlinear ordinary differential equations. Conservation laws are discussed in Chapter 2, and Chapter 3 considers water waves. The scattering and inverse scattering method is described in Chapter 4, which also contains a full explanation of using the inverse scattering method for finding 1-, 2- and 3-soliton solutions of the Korteweg--de Vries equation. After dealing with the Burgers equation in Chapter 5, Chapter 6 discusses the forced Korteweg--de Vries equations. Here the emphasis is on steady-state bifurcations and unsteady-state periodic soliton generation. The Sine--Gordon and nonlinear SchrAdinger equations are the subject of Chapter 7. The final two chapters consider wave instability and resonance. Every chapter contains problems and exercises, together with guidance for their solution. The volume concludes with some appendices which describe symbolic derivations of certain results on solitons. Several user-friendly MATHEMATICA packages are included. The prerequisite for using this book is a background knowledge of basic physics, linear algebra and differential equations. For graduates and researchers in mathematics, physics and engineering wishing to have a good introduction to nonlinear wave theory and its applications. This volume is also highly recommended as a course book.
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
IAU Symposium 172 Dynamics, Ephemerides and Astrometry of the Solar System was held in Paris in July, 1995. 250 scientists from 33 countries attended the symposium; 24 invited lectures and 165 contributed papers were presented (117 of which were posters). The papers covered topics on celestial mechanics (chaos and evolution of the solar system, asteroids, theories of the motion of the planets, the moon and the natural satellites), methods (symplectic mappings and elliptic functions), astrometry (CCD observations, VLBI and radar observations), ephemerides (representation and numerical integration) and on the history of celestial mechanics. |
You may like...
Recommandations Relatives au Transport…
United Nations. Economic Commission for Europe
Paperback
R4,602
Discovery Miles 46 020
Decision-Making for Sustainable…
Cathy Macharis, Gino Baudry
Hardcover
R3,621
Discovery Miles 36 210
Seminal Contributions to Modelling and…
Khalid Al-Begain, Andrzej Bargiela
Hardcover
R3,320
Discovery Miles 33 200
New Horizons in Evolution
Solomon P. Wasser, Milana Frenkel-Morgenstern
Paperback
R3,015
Discovery Miles 30 150
|